Category Archives: Альтернативные источники энергии и энергосбережение

Принцип роботы парокомпрессионного теплового насоса

Тепловой насос — это «холодильник наоборот», отмечается на www. avante. com. ua. В обоих устройствах основными элементами явля­ются испаритель, компрессор, конденсатор и дроссель (регулятор потока), соединенные трубопроводом, в котором циркулирует поток хладагента.

Хладагенты — это вещества, способного кипеть при низкой тем­пературе и меняющее свое агрегатное состояние с газового в одной части цикла, на жидкое — в другой. Просто в холодильнике главная партия отводится испарителю и отбору тепла, а в тепловом насосе — конденсатору и передаче тепла.

Функция бытового холодильника сводится к охлаждению продук­тов, и его сердцем является теплоизолированная камера, откуда тепло «откачивается» (отбирается кипящим в теплообменнике-испарителе хладагентом) и через теплообменник-конденсатор «выбрасывается» в помещение (задняя стенка холодильника довольно теплая на ощупь).

В тепловом насосе главным становится теплообменник, с которого тепло «снимается» и используется для обогрева дома, а второстепен­ная «морозилка» размещается за пределами здания.

Схематично тепловой насос можно представить в виде системы из замкнутых контуров.

Внешний контур (коллектор) представляет собой уложенный в землю или в воду (например, полиэтиленовый) трубопровод, в кото­ром циркулирует незамерзающая жидкость — антифриз. Источником низкопотенциального тепла может служить грунт, скальная порода, озеро, река, море и даже выход теплого воздуха из системы вентиля­ции какого-либо промышленного предприятия.

Во второй контур, где циркулирует хладагент, как и в бытовом холодильнике, встроены теплообменники — испаритель и конденса­тор, а также устройства, которые меняют давление хладагента — рас­пыляющий его в жидкой фазе дроссель (узкое калиброванное отвер­стие) и сжимающий его уже в газообразном состоянии компрессор.

Рабочий цикл выглядит так (рис. 6.7). Жидкость хладагента про­давливается через дроссель, ее давление падает, и она поступает в испаритель, где вскипает, отбирая теплоту, поставляемую коллекто­ром из окружающей среды. Далее газ, в который превратился хла­дагент, всасывается в компрессор, сжимается и, нагретый, выталки­вается в конденсатор. Конденсатор является теплоотдающим узлом теплонасоса: здесь происходит процесс получение теплоты — теплота

Дроссель

іЦ

S4S1

Выход

і—і

сетевой

воды

Вход

сетевой

S3 S2

воды

Конденсатор

100% жидкий хладогент -«■

Сторона

высокого

давления

Сторона

низкого

давления

Испаритель

Жидкий хладоген с частичками пара

©О

S4 S1

О

S3 S2

€К>

Выход теплоносителя

Вход

теплоносителя

Компрессор

Перегретый пар

image422

Рис. 6.7. Схема работы теплового насоса

принимается водой в системе отопительного контура. При этом газ охлаждается и конденсируется, чтобы вновь подвергнуться разряже­нию в расширительном вентиле и вернуться в испаритель. После этого рабочий цикл начинается сначала.

Чтобы компрессор работал (поддерживал высокое давление и цир­куляцию), его надо подключить к электричеству. Но на каждый затра­ченный киловатт-час электроэнергии тепловой насос вырабатывает 2,5—6 киловатт-часов тепловой энергии. Соотношение вырабаты­ваемой тепловой энергии и потребляемой электрической называется коэффициентом трансформации (или коэффициентом преобразова­ния теплоты) и служит показателем эффективности теплового насоса. Эта величина зависит от разности уровня температур в испарителе и конденсаторе: чем больше разность, тем меньше эта величина.

По этой причине тепловой насос должен использовать по возмож­ности большее количество источника низкопотенциального тепла, не стремясь добиться его сильного охлаждения. В самом деле, при этом растет эффективность теплового насоса, поскольку при слабом охлаж­дении источника тепла не происходит значительного роста разницы температур.

По этой причине тепловые насосы делают так, чтобы масса низ­котемпературного источника тепла была значительно большей, чем нагреваемая масса. В этом состоит одно из важнейших отличий тепло­вого насоса от традиционных (топливных) источников тепла, в кото­рых вырабатываемая энергия зависит исключительно от теплотвор­ной способности топлива. По этой причине тепловой насос в каком-то смысле «привязан» к источнику низкопотенциального тепла, имею­щего большую массу.

Эта проблема может быть решена введением в тепловой насос системы массопереноса, например, системы прокачки воды. Так устроена система центрального отопления Стокгольма.

Работа линии по производству биодизельного топлива

Линия по производству биодизельного топлива (рис. 7.8) рабо­тает следующим образом.

Растительное масло из емкости перекачивается насосом Н1 в реактор-трансэтерификатор, куда добавляется порция спирта и гидроокиси калия (КОН) или натрия (NaOH) из дозатора. После заполнения реактора включается насос установки ТЕК-БД и компо­ненты реакции многократно циркулируют через зону гидромехани­ческого воздействия по схеме:

«емкость -» ТЕК-БД -» насос -» турбулентная насадка -> емкость».

При этом температура в реакторе ТЕК-БД поднимается на 10—12 °С. По окончании циркуляции продукты реакции перекачиваются насо-

Глава 7. Используем энергию биомассы 299

Подпись: Глава 7. Используем энергию биомассы 299

Реактор для смешивания химических компанентов Емкость хранения Емкость хранения

image448

Рис. 7.8. Линия по производству биодизельного топлива

 

сом НЗ в одну из емкостей для разделения на биодизель и глицерин (процесс разделения длится 15—20 минут).

После разделения биодизель и глицерин перекачиваются насосами Н4 и Н5, соответственно, в свои емкости. После заполнения этих емко­стей готовый продукт поступает на хранение или использование.

Перед началом работы линии предварительно готовится 4—5 пор­ций смеси КОН (или NaOH) и спирта в реакторе, куда подается спирт и КОН из своих емкостей. Процесс приготовления смеси занимает 10 минут. С помощью насоса Н2 готовая смесь перекачивается в дозатор.

Подготовка биомассы

Перед сжиганием тем или иным способом большинство типов био­масс необходимо определенным образом подготовить. Типы биомасс могут варьировать:

♦ от плотных, относительно сухих материалов, таких, как древесина;

♦ до очень влажных, обладающих низкой теплотворной способно­стью, таких как канализационные стоки и морские водоросли.

Другие материалы, такие как солома, обладая низкой влажностью, имеет малую плотность, и поэтому работа с ними является затруд­нительной. Наиболее важными этапами подготовки биомассы явля­ются:

♦ измельчение;

♦ сортировка по размерам частиц;

♦ сушка;

♦ хранение.

Необходимые размеры древесины получают путем распила, рас­кола и измельчения. Предварительная сушка на воздухе проводится не всегда, в зависимости от техники сжигания. Используют и другой метод подготовки древесины, называемый «уплотнением». В ходе этого про­цесса древесину сушат, измельчают, сортируют по размерам частиц и добавляют связующие агенты. Полученный материал брикетируют или прессуют в более плотную массу с содержанием влаги около 7%.

Н

Примечание.

В целом эта технология способствует улучшению свойств био­массы как топлива, приближая их к свойствам угля.

Этот процесс является дорогостоящим и может более чем в двое повысить цену топлива. Но он, тем не менее, обеспечивает подучение материала, способного заменить обычные виды топлива; в некоторых районах потребители готовы оплачивать эти лишние издержки.

Для транспортировки к месту использования солому прессуют в кипы. Кипы имеет низкую плотность (62—200 кг/м3 в зависимости от типа пресс-подборщика). Они должны быть небольшими для облег­чения погрузочно-разгрузочных работ вручную, что ведет к высо­ким транспортным расходам. Кроме того кипы соломы неудобны для автоматической подачи в печи для сжигания. Делались предложения относительно измельчения соломы перед использованием, но это еще больше увеличивало издержки по подготовке биомассы.

Твердые отходы животноводства содержат обычно 70—85% воды. Перед сжиганием необходима предварительная сушка, которую также можно осуществить путем использования топочных газов. Аналогичные методы применимы к другим материалам с высокой влажностью. При этом количество получаемого тепла в значительной мере снижается вследствие использования его части для высушивания топлива.

Хранение биологического сырья представляет особую проблему вследствие его большого объема, зачастую сезонного его поступления, а также склонности к биологическому разложению. Обычные виды топлива не имеет подобного рода недостатков. В некоторых случаях невозможно обеспечить подачу топлива в соответствии с необходимым выделением тепла, поэтому необходима установка печей (бойлеров), способных работать как на обычном топливе, так и на биомассе.

Области применения когенерационных систем

В качестве источника энергии в мини-ТЭЦ используются двигатели внутреннего сгорания (ДВС): дизельные, газовые и газотурбинные. Энергия, выделяющаяся при сгорании топлива, переходит в энергию электричества и утилизируюмую энергию тепла.

В газовых двигателях могут использоваться такие виды газов как: природный газ пропан, факельный газ, газ сточных вод, биогаз, газ мусорных свалок, коксовый газ, попутный газ, пиролизный газ, дре­весный газ, газ химической промышленности.

Н

Примечание.

Наибольшей эффективностью, надежностью и универсальностью отличаются установки на основе газовых (газопоршневых) двигателей.

Это вызвано, прежде всего, современными требованиями к эколо­гической чистоте окружающей среды, а также к снижению эксплуа­тационных расходов на органическое топливо и доступностью его использования.

Газовые двигатели используются для работы в составе генератор­ных установок, предназначенных для постоянной и периодической работы (снятие пиковых нагрузок) с комбинированной выработкой электроэнергии и тепла (когенерация).

Кроме того, установки могут использоваться для обеспечения работы абсорбционных холодильных установок (тригенерация) в системах кондиционирования.

Секционирование когенераторных установок из нескольких бло­ков, позволяет достичь эффективности такой же, как и у большой установки, при этом получая ряд значительных преимуществ.

Это точное управление мощностью. Максимальный КПД достига­ется при загрузке на 100%. Это значит, что при секционировании, в минимальные часы энергопотребления, есть возможность нагрузить часть блоков, а часть — оставить в нерабочем состоянии. Это приво­дит к увеличению ресурса всей системы в целом.

В последнее время стремительно растет количество оборудова­ния, которое использует для своей работы биогаз, свалочный газ, газ с водоочистных станций или другое альтернативное топливо как, например, метан. Принцип использования биогаза в когенерацион — ных установках представлен на рис. 7.13.

Биогазовая станция строится, прежде всего, возле очистных соо­ружений сточных вод, на свалках коммунальных отходов или в сель­скохозяйственных предприятиях, занимающихся животноводством.

Поскольку биогаз обычно возникает как побочный продукт во время обработки органических отходов, эксплуатация когенерацион — ных установок, работающих на этом виде топлива, является с эконо­мической точки зрения очень выгодной.

image476Примечание.

Новое энергетическое законодательство в таком случае гаран­тирует потребителям когенерационной технологии, которые используют возобновляемые источники энергии, долговременные стабильные закупочные цены электричества на экономически при­влекательном уровне.

SHAPE * MERGEFORMAT

image477

image479

для поставок в сеть

 

image481

для поставок в сеть

 

Нагнетатель с фильтром

image483

для поставок в сеть

Рис. 7.13. Принцип использования биогаза: а — на очистных сооружений сточных вод; б—на свалке отходов; в — при использовании отходов животноводческих ферм

 

в

 

Использование энергии приливов

Приливные колебания уровня в огромных океанах планеты вполне предсказуемы. Основные периоды этих колебаний:

♦ суточные продолжительностью около 24 ч;

♦ полусуточные — около 12 ч 25 мин.

Разность уровней между последовательными самым высоким и самым низким уровнями воды (высота прилива R) составляет 0,5—10 м.

Н

Примечание.

Первая цифра (0,5 м) наиболее характерна, вторая (10 м) достига­ется и даже превосходится лишь в некоторых особенных местах вблизи побережья континентов.

Во время приливов и отливов перемещение водных масс образует приливные течения, скорость которых в прибрежных проливах и между островами может достигать примерно 5 м/с (http://renewables. ru).

Поднятую на максимальную высоту во время прилива воду можно отделить от моря дамбой или плотиной. Места с большими высотами приливов обладают большими потенциалами приливной энергии. Однако не только этот фактор важен для развития приливной энерге­тики: надо принимать во внимание и капитальные затраты, и будущую прибыль от создания соответствующих приливных электростанций (ПЭС).

Энергия приливных течений может быть преобразована подобно тому, как это делается с энергией ветра. Преобразование энергии при­ливов использовалось для приведения в действие сравнительно мало­мощных устройств еще в средневековой Англии и в Китае.

Из современных ПЭС наиболее хорошо известны:

♦ крупномасштабная электростанция Ране мощностью 240 МВт, расположенная в эстуарии реки Ла Ране, впадающей в залив Сен Мало (Бретань, Франция);

♦ небольшая опытная станция мощностью 400 кВт в Кислой губе на побережье Баренцева моря (Россия).

Из мест, которые давно приковывают внимание гидростроителей, следует назвать эстуарий реки Северн в Великобритании и залив Фанди на восточном побережье Северной Америки на границе между США и Канадой.

Высота, ход и периодичность приливов в большинстве прибреж­ных районов хорошо описаны и проанализированы благодаря потреб­ностям навигации и океанографии. Поведение приливов может быть предсказано достаточно точно, с погрешностью менее 4%. Таким образом, приливная энергия оказывается весьма надежной формой возобновляемой энергии.

При её преобразовании возникают и определенные неудобства:

♦ несовпадение основных периодов возникновения приливов (12 ч 25 мин и 24 ч 50 мин), связанных с движением Луны, с при­вычным для человека периодом солнечных суток (24 ч), в связи с чем оптимум приливной генерации находится не в фазе с по­требностями в энергии;

♦ изменение высоты прилива и мощности приливного течения с периодом в две недели, что приводит к колебаниям выработки энергии;

♦ необходимость создания потоков воды с большим расходом при сравнительно малом перепаде высот, что заставляет использо­вать большое число турбин, работающих параллельно;

♦ очень высокие капитальные затраты на сооружение большин­ства предполагаемых ПЭС;

♦ потенциальные экологические нарушения и изменение режимов эстуариев и морских районов.

Вблизи побережья и между островами приливы могут создавать достаточно сильные течения, пригодные для преобразования энергии. Устройства для преобразования энергии приливных течений будут практически сходны с аналогичными устройствами, приводимыми в действие течениями рек.

Соотношения, позволяющие оценить мощность приливных тече­ний, подобны тем, которые используются в ветроэнергетике, при этом следует иметь в виду, что плотность воды во много раз выше плотно­сти воздуха, а скорости течения воды сравнительно низки.

Рис. 5.17. Схема электростанции на приливном течении

Подпись: Рис. 5.17. Схема электростанции на приливном течении

Уже разработан целый ряд современных устройств для преобразова­ния энергии приливных течений, один из которых показан на рис. 5.17. Капитальные затраты на создание подобных устройств в расчете на 1 кВт установленной мощности достаточно высоки, поэтому их строительство целесообразно лишь в отдаленных районах с высокими скоростями при­ливных течений, где любые альтернативные источники энергии еще более дороги. На эту тему интересна книга Волеваха Н. М., Волеваха В. А. Нетрадиционные источники энергии. — К: Вища школа. — 1988. — 58 с.

Основы теории приливной энергетики достаточно просты. На рис. 5.18 показано, что ПЭС может работать как при опустошении

Поверхность бассейна площадью А

■ Высокая вода

Подпись: Поверхность бассейна площадью А ■ Высокая вода

Высота прилива R Низкая вода

Подпись: Высота прилива R Низкая вода

Подпись: -я

Плотина с турбинами

Рис. 5.18. Схема извлечения
приливной энергии

Подпись: Плотина с турбинами Рис. 5.18. Схема извлечения приливной энергии бассейна, так и при его наполнении. Оптимальная станция, использую­щая реверсируемые гидроагрегаты, которые, кроме того, можно еще использовать и в насосном режиме для повышения уровня в бассейне, может перерабатывать до 90% потен­циальной энергии прилива.

Сжижение/восстановление

Были разработаны предложения по превращению биомассы в жид­кость, напоминающую тяжелую топливную нефть, путем реакции ее с восстановительными газами (оксид углерода и водород) в присут­ствии катализатора. Обычно необходимо давление 250 бар и темпе­ратура 600—700 °С. Процессы сжижения обычно предполагают под­готовку восстановительных газов путем пиролиза или окислительной газификации большего количества биомассы. В редких случаях можно получить дешевый водород из других источников, например при элек­тролизе воды на гидроэлектрических установках.

Источники энергии

По виду теплоносителя во входном и выходном контурах насосы делят на шесть типов: «грунт-вода», «вода-вода», «воздух-вода», «грунт-воздух», «вода-воздух», «воздух-воздух».

При использовании в качестве источника тепла энергии грунта трубопровод, в котором циркулирует антифриз, зарывают в землю на глубину 1 м. Минимальное расстояние между трубами коллектора — 0,8… 1 м.

Специальной подготовки почвы не требуется. Но желательно использовать участок с влажным грунтом, если же он сухой, контур надо сделать длиннее. Ориентировочное значение тепловой мощно­сти, приходящейся на 1 м трубопровода, 20—30 Вт. Таким образом, для установки теплового насоса производительностью 10 кВт необходим земляной контур длиной 350—450 м, для укладки которого потребу­ется участок земли площадью около 400 м2 (20×20 м). При правильном расчете контур не влияет на зеленые насаждения.

Если свободного участка для прокладки коллектора нет или в каче­стве источника тепла используется скалистая порода, трубопровод опускается в скважину. Не обязательно использовать одну глубокую скважину, можно пробурить несколько неглубоких, более дешевых, чтобы получить общую расчетную глубину. Иногда в качестве сква­жин используют фундаментные сваи.

Ориентировочно на 1 пог. м скважины приходится 50—60 Вт тепло­вой энергии. Таким образом, для установки теплового насоса произ­водительностью 10 кВт необходима скважина глубиной 170 м.

Существенно снизить необходимую глубину скважины и увели­чить отбор тепловой энергии до 700 Вт на на 1 пог. м скважины позво­ляет применение активного контура «Fill well» первичного преобра­зователя теплового насоса (необходимым условием является наличие обводненого горизонта вскрываемого скважиной).

Среди тепловых насосов, использующих тепло поверхностного слоя земли, выделяется система EarthLinked® с подземным медным теплообменником DIRECT AXXESS®.

Хладагент подается непосредственно к источнику земного типа, что обеспечивает высокую эффективность геотермальной отопитель­ной системы. Испаритель устанавливают в грунт горизонтально ниже глубины промерзания или в скважины диаметром 40—60 мм пробу­ренные вертикально либо под уклоном до глубины 15—30 м.

Благодаря такому инженерному решению устройство теплообмен­ного контура производится на площади всего несколько квадратных метров, не требует установки промежуточного теплообменника и дополнительных затрат на работу циркуляционного насоса.

При использовании в качестве источника тепла близлежащего водоема контур укладывается на дно. Этот вариант принято считать идеальным: не слишком длинный внешний контур, «высокая» температура окружаю­щей среды (температура воды в водоеме зимой всегда положительная), высокий коэффициент преобразования энергии тепловым насосом.

Ориентировочное значение тепловой мощности на 1 м трубопро­вода — 30 Вт. Таким образом, для установки теплового насоса произ­водительностью 10 кВт необходимо уложить в озеро контур длиной 300 м. Чтобы трубопровод не всплывал, на 1 пог. м устанавливается около 5 кг груза.

Для получения тепла из теплого воздуха (например, из вытяжки системы вентиляции) используется специальная модель теплового насоса с воздушным теплообменником. Тепло из воздуха для системы отопления и горячего водоснабжения также можно собирать на про­изводственных предприятиях.

Если тепла из внешнего контура все же недостаточно для отопления в сильные морозы, практикуется эксплуатация насоса в паре с допол­нительным генератором тепла (в таких случаях говорят об использо­вании бивалентной схемы отопления). Когда уличная температура опускается ниже расчетного уровня (температуры бивалентности), в работу включается второй генератор тепла — чаще всего небольшой электронагреватель (тен).

Горючее для автомобиля своими руками

Достоинства

Одним из перспективных видов автомобильного горючего, в насто­ящее время, является метиловый спирт (http://ugle-kislota. narod. ru).

Метиловый спирт (метанол) представляет собой бесцветную вос­пламеняющуюся жидкость со слабым спиртовым запахом, темпера­тура замерзания -98 °С, кипения +65 °С. Хорошо смешивается с водой. Как и все спирты, он обладает высокой детонационной стойкостью, октановое число метанола составляет 114,4 единицы. Для сравнения, октановое число этанола (винный, этиловый спирт) — 111,4 ед.

Из всех антидетонационных компонентов бензина, метанол явля­ется наиболее эффективной добавкой в отношении снижения выбро­сов СО, СН и NOx. Может метанол использоваться и как самостоя­тельное автомобильное горючее, в этом случае метанол имеет опреде­ленные достоинства.

Метанол представляет собой «чисто» сгорающее топливо, обла­дает лучшими топливными характеристиками, чем бензин, вследствие чего, при его применении повышается КПД двигателей внутреннего сгорания. Современные бензиновые двигатели могут хорошо рабо­тать на метаноле. При этом технические характеристики двигателя улучшаются:

♦ высокая детонационная стойкость;

♦ абсолютное отсутствие сернистой коррозии двигателя и выбро­сов серы и сажи в выхлопе;

♦ минимальное нагарообразование в двигателе;

♦ на 50% меньшая токсичность продуктов сгорания.

Следует отметить, что повышается КПД, благодаря внутреннему охлаждению и повышению степени сжатия высокий коэффициент наполнения цилиндров горючей смесью (по сравнению с бензином выигрыш в мощности при работе на метаноле достигает 10%).

Указанные достоинства метанола привели к тому, что он уже давно используется как топливо на гоночных автомобилях и авиамоделях, спортивных мотоциклах, где требуются компактные и вместе с тем мощные двигатели. Многие исследовательские институты считают его топливом будущего.

Гидроаккумулирующая электростанция на энергии морских волн

Необычное устройство Searaser и проект под названием Dartmouth Wave Energy (английский изобретатель Элвин Смит (Alvin Smith) представляет собой волновую электростанцию, использующую энер­гию вертикального движения поплавка.

Однако сам поплавок не имеет электрических систем и представ­ляет собой механический насос, который закачивает морскую воду на большую высоту в прибрежные скалы (http://aenergy. ru/872).

Этот проект — необычная мини Гидроаккумулирующая электро­станция (по-английски Pumped-storage hydroelectricity).

В основе установки — два поплавка (рис. 5.3), способных двигаться друг относительно друга. Верхний раскачивается волнами, нижний соединен с дном при помощи цепи и якоря. Между поплавками нахо­дится «насосная станция» (цилиндр с поршнем двойного действия, который качает воду при движении вниз и вверх) и клапанами с выходными трубами.

— Шланг

Рис. 5.3. Система поплавков

image362

Автоматическая подстройка высоты положения верхнего поплавка в зависимости от уровня моря, который меняется в прилив и отлив — телескопическая труба, раздвигающаяся и складывающаяся под дей­ствием сил Архимеда и тяжести. К этой «приливной» колонне кре­пится насос с верхним поплавком.

Вода подается на сушу, в горы. В горах устраивается бассейн, в котором вода накапливается и выпускается обратно в море, по пути вращая турбину электростанции, идентичной традиционной ГЭС, но без дамбы.

Преимущества у подобной установки следующие. В поплавке нет проводов, магнитов, катушек, контактов и герметичных отсеков для оборудования, что делает его гораздо более дешевым, простым и надежным. Турбины и электрогенераторы волновой станции, рас­положенные на берегу, — давно опробованная и испытанная на ГЭС техника. В отличие от традиционной ГАЭС, Searaser не требует ниж­него водохранилища. В отличие от волновых электростанций, эта установка решает проблему неравномерности силы волн.

По оценке создателя машины, Searaser может поднимать морскую воду на высоту до 200 м. Один полноразмерный поплавок Searaser раз­вивает мощность 0,25 МВт.

Мелкомасштабные методы сжигания

Самый простой метод сжигания биомассы — это сжигание на открытом огне. В этих случаях эффективность сжигания очень низка. При сжигании топлива в традиционных печах отношение выделив­шейся энергии к подведенной энергии может быть менее 10%. В последние годы были сконструированы эффективные дровяные печи и бойлеры.

Значительная потеря тепла в простых топках происходит из-за чрезмерной тяги в дымоходе.

Н

Примечание.

Простое ограждение для огня и ограничение тяги повышает эффек­тивность сгорания до 25%.

В настоящее время имеется значительно более эффективные дровя­ные печи. Комната, где установлена такая печь, получает до 70% энер­гии сгорания топлива или в результате излучения, или в результате конвекции. Однако средняя эффективность дровяных печей состав­ляет все еще около 50%.

Основным недостатком многих систем является:

♦ трудность обеспечения автоматической подачи топлива;

♦ необходимость постоянного внимания со стороны пользователей.

В целях частичного решения проблемы были созданы системы,

предназначенные для использования многих видов топлива; при желании работа й автоматическом режиме достигается путем пере­ключения на ископаемые виды топлива.

Основной проблемой небольших систем сжигания биомассы явля­ется накопление агрессивных масел и смол в более холодных частях дымохода. Эти скопления необходимо периодически удалять; дымо­ход можно очищать также путем пропускания через него горячих газов (однако наряду с удалением нежелательных соединений теря­ется и полезное тепло).