Category Archives: ИСУ

МОНТАЖ И ЭКСПЛУАТАЦИЯ СОЛНЕЧНЫХ УСТАНОВОК

При монтаже и установке гелиосистем теплоснабже­ния рекомендуется следующая последовательность вы­полнения работ.

I. Изготовление, монтаж и установка жидкостной гелиосистемы теплоснабжения.

Установка водяного аккумулятора теплоты включает следующие этапы:

строительство основания, фундамента или опорной конструкции — при выполнении бетонных работ на залив­ке фундамента здания;

установку бака-аккумулятора; монтаж обвязочнцх трубопроводов; заполнение системы водой и проведение испытаний на плотность;

монтаж тепловой изоляции.

, Установка коллектора солнечной энергии включает в себя:

изготовление и установку опорной конструкции — пои изготовлении каркаса, рамы, стропил и других строи­тельных элементов крыши дома;

монтаж опорной конструкции и установку солнечного коллектора на крыше;

монтаж соединительных трубопроводов; испытание контура солнечного коллектора на плот­ность;

проведение теплоизоляционных работ на трубопро­водах.

Установка теплообменников и дополнительного ис­точника энергии включает следующие этапы: монтаж трубопроводов, насосов и арматуры; испытание трубопроводов на плотность; проведение теплоизоляционных работ на трубопро­водах;

установку дополнительного источника энергии. Монтаж установки горячего водоснабжения включает следующие этапы:

Подпись: 19313—675

монтаж теплообменника и трубопроводов для пред­варительного подогрева воды; испытание на плотность; проведение теплоизоляционных работ; монтаж баков-аккумуляторов.

Установка приборов и датчиков системы управления состоит из:

установки датчиков и приборов управления и регу­лирования по месту;

монтажа щита управления с приборами.

II. Изготовление, монтаж и установка воздушных гелиосистем теплоснабжения.

Установка галечного аккумулятора теплоты включа­ет этапы:

изготовление основания и опорной конструкции; изготовление бункера (контейнера) — до установки крыши над помещением или перекрытия над подвалом, в котором устанавливается аккумулятор;

заполнение бункера твердыми частицами гальки, гра­нита и т. п.;

монтаж воздуховодов; проведение изоляционных работ.

Монтаж и установка солнечного коллектора, системы подогрева воды, вспомогательного оборудования и при­боров выполняются в той же последовательности, что и для жидкостных гелиосистем.

При монтаже трубопроводов необходимо выполняв следующие правила:

для уменьшения тепловых потерь и гидравлического сопротивления длина основных трубопроводов и ответв­лений должна быть минимально возможной, а ответвле­ния должны иметь одинаковый диаметр, чтобы обеспе­чивалось равномерное распределение теплоносителя меж­ду отдельными модулями коллектора;

следует использовать минимальное количество сое­динительных деталей, арматуры и т. п.; колена и поворо­ты трубопроводов необходимо изготовлять с помощью гибочного станка;

для предотвращения контактной коррозии при уста­новке арматуры из медных сплавов на стальных трубо­проводах необходимо использовать соединительные эле­менты из диэлектрических Материалов;

на длинных прямых участках трубопроводов должны

быть предусмотрены компенсаторы температурных уд­линений и соответствующие опоры;

в самых верхних точках системы должны быть уста­новлены воздушники и должен быть предусмотрен слив жидкости из нижних точек системы.

При использовании в контуре коллектора антифриза должен быть предусмотрен расширительный бак, емкость которого составляет приблизительно 1—2 % емкости контура, включая сам коллектор.

Какова средняя теплопроизводительность гелиоустановки?

Она зависит от климатических характеристик района и характеристик применяемого гелиотехнического обо­рудования — коллекторов, аккумуляторов и др. В сред­ней полосе при использовании плоского коллектора мож­но получить до 350 кВт-ч теплоты в год сім2 площади КСЭ,

ПЛАВАТЕЛЬНЫЕ БАССЕЙНЫ С СОЛНЕЧНЫМ ОБОГРЕВОМ

Солнечные установки наиболее целесообразно приме­нять для низкотемпературных процессов. Температура воды в плавательных бассейнах обычно поддерживается на уровне 20—27 °С, что всего йа 5—15 °С выше темпера­туры наружного воздуха, и энергия солнечной радиации в летний период—с начала июня до середины сентяб­ря — вполне может заменить традиционный источник энергии. То же относится и к лечебным минеральным ваннам, хотя в этом случае температура воды и несколь­ко выше — 35—38 °С. Благодаря использованию солнеч­ной энергии купальный сезон в открытых плавательных бассейнах будет увеличен на 1,5—2 мес. в год, а в за­крытых бассейнах будет обеспечена значительная эконо­мия топлива, особенно с учетом того, что в летний пери­од котлы работают неэффективно — с низким КПД. От­ключение котлов на этот период не только снижает расход топлива, но и уменьшает загрязнение окружаю­щей среды вредными выбросами, в том числе оксидами серы и азота.

В ряде стран (США, Австралия, ФРГ) в течение мно­гих лет успешно эксплуатируется большое число частных и коммунальных плавательных бассейнов с солнечным обогревом. Это перспективная область применения сол­нечных установок как в спортивно-оздоровительных уч­реждениях, так и в индивидуальном строительстве в бла­гоприятных в климатическом отношении районах страны,

В условиях средней полосы и южной части СССР ге­лиоустановки могут давать как минимум 250—300 кВт* ч

полезной теплоты в год с 1 м2 площади плоского солнеч­ного коллектора. Одна из возможных схем гелиоустано­вок для подогрева воды в плавательном бассейне пока­зана на рис. 47, а. Вода из бассейна насосом прокачивает­ся через фильтр и направляется в солнечный коллектор. Нагретая вода из коллектора поступает в бас­сейн. В схеме предусмотрены обратный клапан, воздуш­ный клапан и байпасная линия с вентилем. Коллектор должен быть изготовлен из коррозионно-стойких мате­риалов, чтобы не подвергаться агрессивному действию воды из бассейна. Кроме того, материал должен выдер-

image063

Рис. 47. Схемы солнечных установок для обогрева плавательных

бассейнов:

а — одноконтурная схема; 6 — схема солнечно-теплонасосной установки:
/ — бассейн; У —насос: а —фильтр; 4 — обратный клапан: 5 — коллектор сол-
нечной энергии; 6 — воздушник; 7 — байпас с вентилем; в — тепловой насос;
9 — теплообменник; 10 — трехходовой клапан

живать температуру от —20 до 70 °С, обладать хорошей поглощательной способностью и высоким коэффициен­том теплопроводности. Через коллектор прокачивается большое количество воды, и должно быть обеспечено та­кое поперечное сечение каналов, чтобы гидравлическое сопротивление было минимальным. Наиболее подходя­щими материалами являются окрашенные в черный цвет полиэтилен, полипропилен и синтетический каучук. Пер­вые два материала дешевы, а каучук значительно доро­же, но более стойкий. При годовом поступлении 1050 кВт-ч/м2 солнечной энергии на горизонтальную по­верхность и площади КСЭ 800 м2 за. сезон гелиоустанов­

ка может дать 170 МВт-ч теплоты, а потребность в теп­лоте составляет 270 МВт-ч. В данном случае КСЭ не имеет остекления, вода в нем подогревается на 3,5 °С, и средняя тепловая мощность установки за сезон состав­ляет 270 кВт, а ее КПД — 38,3 %. Длинные оребренные трубы изготовлены из полипропилена, а прямой и обрат­ный соединительные трубопроводы — из полиэтиленовых труб.

Схема комбинированной солнечно-теплонасосной установки для обогрева плавательного бассейна показа­на на рис. 47, б. Летом в бассейне поддерживается тем­пература не ниже 20 °С. Это обеспечивается с помощью КСЭ. При неблагоприятных погодных условиях включа­ется тепловой насос, использующий КСЭ в качестве ис­парителя.

Для снижения тепловых потерь водная поверхность бассейгіа покрывается специальной оболочкой. Если тем­пература воды в бассейне выше, чем в КСЭ (осенью, вес­ной), то КСЭ отключается, а работает тепловой насос.

В условиях средней части СССР гелиоустановка, предназначенная для поддержания температуры воды в плавательном бассейне на уровне 20—-27 °С, дает за сезон 250—270 кВт-ч полезной теплоты на 1м2 площади КСЭ. Для сравнения укажем» что годовая удельная теп- лопроизводительность гелиосистемы горячего водоснаб­жения равна 300—500 кВт-ч/м2 в год, а гелиоустановка отопления (30—70°С) 150—300 кВт-ч/м2 в год. Бассейн теряет теплоту вследствие испарения воды, конвекции и излучения в окружающую среду, теплопроводности от дна к грунту и на разогрев. Требуемое количество теп­лоты от обычного топливного источника равно разности между суммарными теплопотерями бассейна и поступ­лением солнечной энергии.

Тепловые потери открытого плавательного бассейна могут быть существенно снижены, если в те периоды, когда бассейн не используется, т. е. в ночное время и в — холодную ненастную погоду, закрывать его водную по­верхность. Для этого можно использовать полимерную пленку или плиты из пенопласта. При работе бассейна полимерное покрытие убирается и хранится в свернутом виде на краю бассейна, плиты также могут быть сложе­ны там же в виде штабеля. Второй вариант — это двух­слойное полимерное покрытие в виде подушки, которая надувается воздухом и изолирует поверхность воды от наружного воздуха; при работе бассейна воздух выпус­кается и благодаря наличию утяжелителей покрытие по­гружается на дно бассейна. Защита поверхности воды от наружного воздуха позволяет уменьшить тепловые поте­ри на 40—50 %, что при площади бассейна 1000 м2 экви­валентно экономии почти 25—35 м3 мазута за сезон в районах с годовым поступлением солнечной энергии порядка 1000—1100 кВт-ч/м2.

При использовании пластмассовых коллекторов себе­стоимость 1 кВт-ч теплоты в 3—5 раз ниже по сравне­нию со стандартными плоскими КСЭ и в 6—10 раз ниже по сравнению с вакуумированными КСЭ.

Один из наиболее крупных открытых плавательных бассейнов с солнечной установкой в Европе находится в г. Виде (ФРГ) и име­ет площадь поверхности воды 1500 м2 и объем 2500 м3. Всего в ФРГ эксплуатируется 2800 бассейнов со. средней площадью одного бассей­на 1270 м2, и расход топлива за сезон составляет 92 т нефти на 1 бассейн, а всего потребляется 260 тыс. т нефти. Общие теплопотери бассейна составляют 2390 кВт-ч/м2 за сезон, в том числе за счет излучения с поверхности воды теряется 1570, испарения и конвек­ции — 540, с промывочной водой — 230, вследствие теплопроводно­сти— 25 кВт-ч/м2 и потери при первом разогреве составляют 25 кВт-ч/м2. Вследствие поглощения атмосферного и солнечного излучения приход энергии составляет 1730 кВт-ч/м2 за сезон, а об­щая потребность в теплоіе за сезон равна 660 кВт-ч/м2. Итак, мак­симальные потери обусловлены испарением и теплоотдачей от во­ды к воздуху, а вторая по величине потеря теплоты — разность между излучением поверхности воды и поглощением атмосферного излучения (в диапазоне длин волн от 6 до 60 мкм), составляющая 370 кВт-ч/м2 за сезон.

Если глубина бассейна не превышает 1 м, то его дно и стены должны быть покрашены краской с высокой по­глощательной способностью, а дно, кроме того, должно иметь шероховатую поверхность. Для промывки фильт­ров используется теплая вода, норма расхода на одну промывку — 0,9 м3 на 1 м2 поверхности бассейна. Теп­лоту промывочной воды необходимо утилизировать, уста­новив после фильтров теплообменник.

При реализации всех трех указанных способов энер­госбережения потребность в теплоте снижается до 260 кВт-ч/м2 за сезон, что составляет всего 40 % перво­начального значения. При этом требуемая площадь плос­кого КСЭ уменьшается до 0,4 м2 (вместо 1 м2) на 1 м2 площади поверхности воды в бассейне. При этом годо­вое теплопотребление бассейна составляет 700— 800 МВт-ч, среднесуточная теплопроизводительность ге­лиоустановки за период май—сентябрь 2,5 кВт-ч/м2 в день (максимум 6 кВт-ч/м2 в день) при площади по­верхности воды КСЭ 1500 м2, температура воды на вхо­де в КСЭ 20—27 °С, а на выходе 24—36 °С при расходе 40—90 м3/ч.

Глава четвертая

СОЛНЕЧНЫЕ УСТАНОВКИ ДЛЯ ПРИМЕНЕНИЯ
В СЕЛЬСКОМ ХОЗЯЙСТВЕ

НЕКОТОРГЕ ВОПРОСЫ ЭКСПЛУАТАЦИИ И ИСПОЛЬЗОВАНИЯ СОЛНЕЧНЫХ УСТАНОВОК

В каких районах можно использовать солнечные установки?

Практически в любом районе. Сезонные установки горячего водоснабжения можно использовать в различ­ных местах, но чем больше широта местности, тем коро­че период использования установки в год, а следователь­но, хуже показатель экономической эффективности. Сол­нечные установки отопления лучше всего подходят для районов с продолжительным отопительным периодом, но с достаточно высокой интенсивностью солнечной радиа­ции и умеренной температурой наружного воздуха в отопительный период.

Сколько можно сэкономить за счет солнечной установки?

Это зависит от многих факторов; климатических дан­ных местности, размеров и теплоизоляции дома, среднего, уровня теплопотребления, типа и размеров гелиоустанов­ки. Вполне возможно получить экономию от 25 до 75 % расходов на топливо.

СОЛНЕЧНЫЕ ТЕПЛИЦЫ, СУШИЛКИ И КУХОННЫЕ ПЕЧИ

В сельском хозяйстве имеются большие возможности для применения солнечных установок — в растениеводст­ве, животноводстве и садоводстве. Речь идет прежде все­го о гелиотеплицах, сушильных установках, горячем во­доснабжении и отоплении ферм по разведению крупного рогатого скота, свиней, птиц, о подогреве воды для бас­сейнов для разведения рыб, о холодильных установках и т. п. Например, в сельском хозяйстве Голландии — страны с наиболее современным сельским хозяйством — потребляется 1/3 всей тепловой энергии, используемой в аграрном секторе экономики стран ЕЭС, причем 90 % приходится на энергопотребление в садоводстве и ого­родничестве, а доля теплиц составляет 20 %. Горячая во­да с температурой 10—80 °С потребляется для различ­ных целей на фермах. Так, для отопления свинарников, птичников, молочных ферм требуется воздух или вода с температурой 20—45 °С, для горячего водоснабже­ния— вода с температурой до 80 °С. От общего объема теплопотребления в сельском хозяйстве Голландии, эк­вивалентного 3 млн. т нефти в год, использование солнеч­ной энергии обеспечивает экономию около 0,2 млн. т нефти, а при условии применения улучшенной тепловой изоляции, в том числе подвижных теплоизоляционных экранов, экономия достигает 1 млн. т нефти в год. Опи­санные в предыдущей главе установки отопления и го­рячего водоснабжения применяются и для сельскохозяй­ственных объектов, хотя во многих случаях они имеют более простое конструктивное исполнение и ориентирЬ — ваны на применение местных материалов. Ниже рассмот­рены другие типы гелиоустановок для сельского хозяй­ства.

Гелиотеплицы. Постоянно возрастает производство овощей в закрытом грунте — парниках и теплицах. В скандинавских странах, Голландии, ФРГ потребление энергии в теплицах составляет 1—1,5 % общенациональ­ного энергопотребления и достигает 20—35 % общего по­требления энергии в сельском хозяйстве.

Теплицы — это биолого-теплотехнические устройства, и они могут быть весьма существенно усовершенствова­ны, если их превратить в гелиотеплицы. Солнечная энер­гия в обычной теплице используется главным образом для процесса фотосинтеза, при котором растения погло­щают и аккумулируют до 10 % энергии падающего сол­нечного излучения. При этом из диоксида углерода и во­ды под действием солнечного света образуются углеводы и молекулярный кислород. Из молекул углеводов обра­зуются органические вещества, необходимые для жизни и роста растений.

В обычных теплицах из-за большой площади свето­прозрачных поверхностей возникают значительные теп- лрпотери, для компенсации которых требуется определен­ный расход топлива в системе отопления. Теплицы могут обогреваться горячей водой, водяным паром, нагретым воздухом, инфракрасным излучением или продуктами сгорания топлива. При создании гелиотеплицы прежде всего нужно позаботиться о существенном снижении теплопотерь за счет применения теплоизоляции. Кроме того, необходимо обеспечить улавливание максимально возможного количества солнечной энергии и аккумули­рование избыточной теплоты.

Сама гелиотеплица служит пассивной гелиосистемой. Для повышения ее эффективности необходимо использо­вать аккумулятор теплоты. На рис. 48 показана схема гелиотеплицы с двойным остеклением, теплоизолирован­ной северной стенкой, имеющей отражательное покры­тие на внутренней поверхности, и грунтовым аккумуля­тором теплоты. Обычная пленочная теплица может иметь подпочвенный аккумулятор теплоты (рис. 49). Теплица имеет площадь 500 м2, а аккумулятор расположен под теплицей на глубине 0,5 м, выполнен в виде ямы шири­ной 5,4, длиной 80 и глубиной 1,2 м, которая заполнена кусками гранита размером 150—200 мм. Аккумулятор имеет кирпичные каналы, сообщающиеся с теплицей

image064

трубами диаметром 350 мм. В одном канале установлен вентилятор мощностью 0,1 кВт.

Теплый воздух из теплицы проходит по первому кана­лу, отдает часть теплоты аккумулятору и затем возвра­щается через второй канал к вентилятору. Днем аккуму­лятор заряжается теплотой, а ночью разряжается. Го-

image065

Рис. 49. Пленочная теплица с грунтовым аккумулятором теплоты: / — теплица;. 2 — аккумулятор; 3, 4 — каналы: 5, f — трубы; 7 — вентилятор

довая экономия топлива составляет 400—500 т условного топдива на 1 га обрабатываемой площади.

Расход энергии в теплицах уменьшается при приме­нении двойного остекления, подвижной защитной тепло­вой изоляции и усовершенствовании гелиоустановок. Ак­кумулирование теплоты наиболее целесообразно осуще­ствлять в грунте под теплицей. Для этого днем нагретая в солнечном коллекторе вода пропускается по системе пластмассовых труб, уложенных в грунт на небольшой глубине, и при этом происходит зарядка аккумулятора теплоты. Для использования аккумулированной теплоты в ночное время в трубы подается холодная вода; нагре­ваясь, она направляется на обогрев теплицы либо непо­средственно, либо после дополнительного подогрева.

Различают два типа гелиотеплиц: пристроенные к юж­ной стене жилого дома и отдельно стоящие. На рис. 50

image066

image067image068

показаны различные геометрические формы пристроен­ных тешущ. Они различаются по степени использования солнечного излучения, по возможности наиболее рацио — нального использования внутреннего пространства и со­ответственно по конструкции. Угол наклона южной остек­ленной поверхности к горизонту зависит от широты ме­стности и для средней полосы СССР может приниматься равным р=504-60°, при этом угол наклона крыши Pi = =204-35°. Оптимальное отношение. площади поверхно­сти грунта к площади светопрозрачной поверхности со­ставляет 1 : 1,5. При этом обеспечивается оптимальный энергетический баланс, т. е. разность между улавливае­мой солнечной энергией и теплопотерями, и хорошее ис­пользование внутреннего пространства. При вертикаль­ном расположении передней стенки не обеспечивается максимальное улавливание солнечной энергии. Следует иметь в виду, что пристроенная к дому гелиотеплица является его продолжением и все сооружение восприни­мается как единое целое, поэтому важное значение име­ет общая архитектура. На рис. 41, а показан красивый дом с пристроенной гелиотеплицей. Одна из наиболее удачных конструкций солнечных домов с гелиотеплицей создана Балкомбом в г. Санта-Фе (штат Нью Мексико, США), располженном на широте 36° с, ш. и высоте 2200 м над уровнем моря. Дом площадью 150 м2 имеет пристро­енную гелиотеплицу с площадью остекленных поверхно­стей 70 м2. Теплопотребление составляет 10 кВт при раз­ности температур внутреннего и наружного воздуха 40 °С. Дом имеет плоский солнечный коллектор площа­дью 38м2 с двухслойным остеклением. Аккумулирование теплоты осуществляется во внутренних стенах из камня (толщина стен 250 и 350 мм), бетонном полу в теплице и в двух галечных аккумуляторах общим объемом 19 м3. Солнечный дом Балкомба показан на рис. 42. Наружные стены хорошо теплоизолированы и имеют коэффициент теплопотерь 0,2 Вт/(м2-°С). Для отоплений используют­ся электронагреватели общей мощностью 3 кВт. В бла­гоприятных климатических условиях, характеризующих­ся высокой плотностью поступающей солнечной радиа­ции даже зимой, около 82 % теплопотребления обеспечивается за счет солнечной энергии без ущерба для комфорта.

Конструкция отдельно стоящей гелиотеплицы показа­на на рис. 51. Южная сторона теплицы имеет прозрач-

юз

Подпись: 3 -Ч- Рис. 51. Отдельно стоящая гелиотеплица: / — прозрачная изоляция; 2 — теплоизолированная передняя стенка; 3 — тепло-изолированная северная стенка; 4 — крыша; $ — теплоизоляция; 6 — теплоизо-лированный фундамент; 7 — аккумулятор теплоты

ную изоляцию, опирающуюся на стенку. Северная стен­ка и крыша выполнены из непрозрачных строительных материалов и изнутри покрыты слоем теплоизоляции Для уменьшения теплопотерь необходимо теплоизолиро вать также стенку и наружную поверхность фундамента У северной стенки в теплице размещается тепловой ак кумулятор, например ряд бочек или канистр с водой Оптимальные значения углов наклона поверхностей вы

бираются по максимальному углу высоты Солнца в зим­ние месяцы для данного района. Так, для средней поло­сы России можно принимать Pi ==504-60°, р2=30°, при этом угол Рз должен быть не более 30°. Теплица должна иметь оптимальное расположение: ее устанавливают на ровном незатеняемом месте с естественной защитой от ветра, например с помощью кустарников или забора с северной стороны. Для максимального улавливания солнечной энергии конек крыши теплицы необходимо ориентировать вдоль оси восток—запад.

Вариант теплицы с галечным аккумулятором тепло-

ты показан на рис. 52. Внутренняя поверхность северной стены имеет отражательное покрытие, т. е. окрашена бе­лой блестящей краской. Это обеспечивает лучшую осве­щенность теплицы и уменьшает теплопотери. При хоро­шей теплоизоляции северной стены теплопотреблеиие теплицы снижается в 2 раза. Во избежание неконтроли­руемого воздухообмена должны быть тщательно уллот-

image070

Рис. 52. Гелиотеплица с галечным аккумулятором теплоты:

/ — прозрачная изоляция; 2 — опорная стенка; а —северная стена; 4 — тепло­изоляция; 5 — галечный аккумулятор; 6 — ящики с рассадой; 7 — защищенный грунт; « — теплоизолированный фундамент

йены двери, окна, фрамуги вентиляционных отверстий. Однако кратность воздухообмена не должна быть ниже 0,5—1ч-1, так как для жизнедеятельности людей и рос­та растений необходим приток свежего воздуха.

Для теплоизоляции непрозрачных поверхностей ограждающих конструкций используются различные ма­териалы — минеральная вата, пенопласты (пенополи­стирол или пенополиуретан), спрессованная солома, су­хие опилки и стружка. Теплоизоляция с обеих сторон должна быть закрыта пленкой или фанерой,

В качестве материала прозрачной изоляции гелиотеп­
лиц используются стекло (лучше специальное садовое), полимерная пленка и листы прозрачной пластмассы. Пропускательная способность прозрачной изоляции т имеет следующие значения при падении солнечных лучей по нормали к поверхности:

Подпись:Однослойное остекление, , t, , , , , , ,

Двухслойное остекление,

Поливинилхлоридная пленка: прозрачная *

полупрозрачная. , * , , t,

Полиэтиленовая пленка

Однослойное остекление+полиэтиленовая пленка,

Стекло обладает такими положительными свойства­ми, как способность хорошо выдерживать значительные колебания температуры, длительный срок службы при любых погодных условиях. Оно придает сооружению эс­тетически привлекательный вид. Но, к сожалению, стек­ло легко разрушается, поэтому требуется надежная упа­ковка при транспортировке, а в конструкции должны быть предусмотрены зазоры для термического расшире­ния. Основным недостатком пластмасс и полимерных пленок является их низкая устойчивость к действию уль­трафиолетового излучения и теплоты. Кроме того, они имеют малый срок службы, легко загрязняются из-за электростатической зарядки поверхности и легко по­вреждаются. Пропускательная способность пленок быст­ро снижается под действием неблагоприятных погодных условий, и поэтому их применение допустимо в тех слу­чаях, когда не требуется длительный срок эксплуатации теплиц. Срок службы пленки в наружном слое прозрач­ной изоляции теплиц — от 1 года (полиэтиленовая плен­ка) до 3 лет (поливинилхлоридная и стабилизированная ультрафиолетовыми лучами полиэтиленовая пленка). Лучше всего пленку использовать в качестве второго, внутреннего слоя прозрачной изоляции. Хороший эффект дает применение специальных компактных двухслойных пластин прозрачной изоляции: два листа стекла склеи­вают по периметру с зазором в 6—12 мм или использу­ют две прозрачные пластмассовые пластины (из акрило­вого стекла или поликарбонатной пластмассы) с по­перечными перегородками и аналогичным воздушным вазором.

Коэффициент теплопотерь К через прозрачную изо­
ляцию и степень уменьшения теплопотерь Дq для различ­ных вариантов выполнения прозрачной изоляции при скорости ветра 4 м/с составляют:

К. Вт/ (м* • °С)

А?. %

Однослойное остекление

Один слой стекла и один слой полиэтилено-

8,6

0,

вой пленки…………………………………… …. . 1

Один слой стекла и один слой поливинил-

8,3/6,4

4/26

хлоридной пленки, , і, , , і, ,

6,2/4,7

28/46

Примечание. В числителе давы значения при отсутствии уплотнения прозрачной изоляции, а в знаменателе — с уплотнением.

Для предотвращения запотевания (выпадения кон­денсата) на прозрачной изоляции следует уменьшить коэффициент теплопотерь путем применения двухслой­ной прозрачной изоляции. При температуре в теплице 20 °С в случае однослойного остекления (толщиной 6 мм) /(=6,8 Вт/(м2-°С) и двухслойного остекления К=~ =3,4 Вт/(м2-°С). Конденсат осаждается на поверхности стекла при следующих значениях температуры наруж­ного воздуха Гв в зависимости от относительной влаж­ности воздуха ф внутри теплицы:

Ф-

%

* 1 } 4 1 1 1 і 1

90

80

70

60

80

40

30

т»,

°С:

при

НИИ

однослойном остекле-

18

16

14

и

8

2

0

при

НИИ

двухслойном остекле-

16

11

6

0

—6

-19

—25

При небольшом образовании конденсата влагосодер — жание воздуха в теплице повышается, что может небла­гоприятно влиять на растения. Снижение влажности воз­духа и температуры достигается благодаря вентиляции теплицы. При отсутствии вентиляции температура в теп­лице может повышаться до 50 °С и более. Вентиляция не только позволяет регулировать температуру и влажность воздуха, но й обеспечивает газовый обмен (Ог и СОг). При естественной вентиляции воздухообмен зависит от площади и расположения вентиляционных отверстий с клапанами. Для свободно стоящей теплицы эти отвер­стия должны лежать в направлении преобладающих вет­ров, чтобы с увеличением скорости ветра увеличивался воздухообмен. Площадь отверстий должна составлять приблизительно 1/6 площади теплицы, причем площадь

нижних отверстий для входа воздуха должна быть на 1/3 меньше площади выпускных отверстий, а разность их от меток по высоте должна составлять не менее 1,8 м.

Летом в теплице может возникать непереносимая жа­ра. Для предупреждения перегрева в теплице должна быть достаточная масса теплоаккумулирующего матери­ала, должен быть обеспечен хороший воздухообмен и предусмотрено затенение теплицы, что значительно снижает температуру воздуха и растений и интенсив­ность лучистого теплообмена. Для затенения использу­ются синтетические ткани, полотно, циновки, располагае­мые снаружи на остекленных поверхностях.

Объем аккумулятора теплоты (водяного, галечного, грунтового), площадь остекленных поверхностей и тол­щина теплоизоляции определяются расчетом с учетом климатических данных.

В туннельных теплицах могут использоваться плоские коллекторы солнечной энергии и грунтовые аккумулято­ры теплоты с пластмассовыми трубами, проложенными в грунте для циркуляции нагретого или холодного воз­духа. В одном из вариантов может быть предусмотрена система впрыска нагретой воды в теплицу, благодаря че­му обеспечивается требуемый температурно-влажност­ный режим. По сравнению с неотапливаемой теплицей при использовании гелиосистемы температура воздуха на 3—8 °С выше. Аккумулирование теплоты может осу­ществляться непосредственно в самой теплице в грунте или в цилиндрических капсулах с плавящимся вещест­вом типа парафина.

Эффективность гелиотеплицы значительно возрастает при применении теплового насоса, отбирающего теплоту у грунта, грунтовых вод или наружного воздуха.

Гелиосушилки. Выбор метода сушки определяется масштабом производства, климатическими особенностя­ми местности, видом высушиваемого материала и стои­мостью дополнительной энергии. Подвод теплоты к ма­териалу от сушильного агента может осуществляться конвективным путем или путем излучения, соответствен­но различают конвективные и радиационные сушилки. В первых продукт контактирует с воздухом, нагретым солнечной энергией, во вторых продукт непосредственно облучается Солнцем, температура в сушилках этого типа достигает 60—75 °С. Могут также применяться комбини­рованные сушилки, в которых участвуют оба вида теп­лообмена, но преобладает конвекция, а установка состо­ит из воздухонагревателя и сушильной камеры с про­зрачными стенками.

Естественная сушка сельскохозяйственных продуктов используется повсеместно и с давних пор. При этом про­дукты расстилают на земле, подвешивают под навесом или размещают на поддонах. При сушке на воздухе не­защищенных сельхозпродуктов имеют место большие по­тери вследствие неполного высушивания, загрязнения, заплесневения, склевывания птицами, повреждения на­секомыми, действия осадков.

Применение солнечных установок типа «горячий ящик» повышает эффективность сушки и уменьшает по­тери продукта. Существенно сокращается время сушки и улучшается качество продукта, в том числе сохран­ность витаминов. Однако коэффициент использования ге­лиосушилок для сельского хозяйства, как правило, низ­кий. В некоторых случаях за год они могут использо­ваться всего несколько недель. И это, естественно, не способствует достижению высоких экономических пока­зателей сушилок. В настоящее время экономически целе­сообразно применять гелиосушилки для сушки сена. Си­туация достаточно благоприятная при сушке древесины, рыбы, при применении гелиосушилок в прачечных.

Различают гелиосушилки с прямым и косвенным дей­ствием солнечной энергии. В установках первого типа солнечная энергия поглощается непосредственно самим продуктом и окрашенными в черный цвет внутренними стенками камеры, в которой находится высушиваемый материал. Сушилка этого типа показана на рис. 53. Она имеет верхнюю прозрачную изоляцию, перфорированную платформу для размещения высушиваемого материала, боковые стенки (южная стенка — из прозрачного мате­риала), теплоизоляцию с отверстиями для поступления воздуха и основание. Для удаления влажного воздуха из сушилки в верхней части северной стенки предусмотре­ны отверстия. Сушильные установки второго типа содер­жат солнечный воздухонагреватель и камерную или тун­нельную сушилку. В камерной сушилке воздух движется через слой высушиваемого материала, размещенного на сетчатых поддонах, снизу вверх, в то время как в тун­нельной сушилке материал движется на конвейерной ленте в одну сторону, а воздух движется противотоком в обратном направлении.

Рассмотрим примеры конструктивного выполнения камерных гелиосушилок. Простая сушилка с использова­нием полимерной пленки может быть изготовлена в со­ответствии с рис. 54. Она работает на естественной тяге. Воздух нагревается в пленочном солнечном воздухона-

image072

/

image073

Рис. 53. Гелиосушилка с непосредственным облучением влажного

материала:

/ — прозрачная изоляция; 2 — платформа для материала; 3 — стенка; 4 — теп-
лоизоляция; 5, 7 — отверстия; 6 — фундамент

гревателе и по воздуховоду поступает в нижнюю часть сушильной камеры, где на перфорированных поддонах (сетках, решетках) размещается влажный материал. На­гретый воздух движется в сушильной камере снизу вверх через слой материала и удаляется из камеры через за­зор между верхней кромкой и козырьком. Стенки сушиль­ной камеры могут быть теплоизолированы или выполне­ны из светопрозрачного материала. Пленочный воздухо­нагреватель изготовляется из полимерной пленки, натянутой на проволочный каркас. Верхняя поверхность нагревателя изготовляется из прозрачной пленки, а ниж­няя—из черной (рис. 55, а). Его можно также выпол­нить в виде двух цилиндрических поверхностей — наруж­ной прозрачной и внутренней черной (рис. 55,6).

Подпись: Рис. 54. Камерная гелиосушилка с пленочным воздухонагревателем: Г—пленочный воздухонагреватель; 2 — воздуховод; 3 — сушильная камера; 4 — решетка; 5 — козырек; СВ, ВВ— свежий и влажный воздух

Солнечная камерная сушилка с принудительным дуть­ем показана на рис. 56. Она включает воздухонагрева­тель, сушильную камеру и вентилятор. В теплоизолиро­ванном корпусе воздухонагревателя с прозрачной изо­ляцией находится зачерненная лучепоглощающая

Подпись: Рис. 55. Пленочный воздухон агреватель из прозрачной (1) и и черной (2) полимерной пленки
image076

поверхность из гофрированного металла. Горячий воздух по теплоизолированному воздуховоду поступает в су­шильную камеру с перфорированными поддонами для высушиваемого материала, которая установлена на опо­рах и сверху накрыта козырьком.

На рис. 57 показана еще одна конструкция гелиосу­шилки с естественным дутьем, отличающаяся типом воз­духонагревателя. В корпусе из оцинкованного железа с теплоизоляцией расположены две секции воздушного коллектора матричного типа. В корпусе предусмотрены отверстие для поступления наружного воздуха и свето­прозрачная изоляция. Солнечная энергия поглощается в матрице, представляющей собой два ряда покрашенных черной краской металлических сеток со стальной струж­ці

Рис. 56. Камерная сушилка с Вентилято-
ром и гофрированным абсорбером возду-
хонагревателя:

image077

/ — воздухонагреватель; 2 — сушильная каме — ра; 3 — вентилятор; 4 — теплоизолированный корпус; 5 — прозрачная изоляция; 6 — абсор­бер; 7 — воздуховод; 8 — опора; 9 — козырек

image078Рис. 57. Гелиосушилка с пористым абсорбером воздухонагревателя:

1 — корпус воздухонагревателя; 2 — остекление; 3 — пористая лучепогло — щающая насадка; 4 — сушильная ка­мера; 5 — решетка для материала; 6 —■ перегородка; 7 — козырек кой между ними. Ее можно также сделать из нескольких слоев черной пористой ткани типа мешковины. Нагретый воздух поступает в сушильную камеру, которая имеет су­живающуюся кверху форму и ряд сеток, на которые укладывается влажный материал. Для подачи воздуха под каждый слой материала в камере предусмотрены вертикальные перегородки, образующие необходимые щели для воздуха. Сверху камера накрыта „козырькам.

Описанная гелиосушилка имеет высокую эффективность.

КПД коллектора достигает 75 % благодаря большо­му расходу воздуха [0,5 м3/с или 0,13 кг/(с-м2)], а по­тери давления—до 250 Па. Срок окупаемости — до 5 лет.

Простая и дешевая гелиосушилка для сельскохозяй­ственного кооператива может быть изготовлена из про­зрачной и черной полимерной пленки, стабилизирован­ной к действию ультрафиолетового излучения (рис. 58). На деревянный каркас натянута полиэтиленовая пленка толщиной 0,1 мм, а днище представляет собой черную полиэтиленовую пленку (0,1 мм), уложенную на слой

image079

Рис. 58. Пленочная гелиосушилка:

I — прозрачная полимерная пленка; 2 — черная пленка на настиле для разме­щения продукта; 3 — теплоизоляция; 4 — боковые стенки

щелухи тодщиной 75 мм, служащей тепловой изоляцией. Боковые стенки внизу присыпаны землей, длина и шири­на коллектора соответственно равны 30 и 4,6 м. Нагре­тый воздух поступает в цилиндрическую камеру диа­метром 1,5 и высотой 1,8 м, в которой размещается 1,75 т сельскохозяйственного продукта (зерна) в несколько сло­ев толщиной по 150 мм.

Еще одна конструкция высокоэффективной гелиосу­шилки для различных сельхозпродуктов показана на рис. 59. Воздушный коллектор изготовляется из отдель­ных модулей площадью по 5 м2, которые в собранном ви­де образуют панели, устанавливаемые в наклонном по­ложении на крыше сарая. Внутри сарая размещаются го­ризонтальный желоб или вертикальный бункер для влажного материала, вентилятор, воздухораспредели­тельная камера. Панели воздушного коллектора присо­

единяются к вентилятору с помощью воздуховода. Луче — поглощающая поверхность воздушного коллектора — это пористая матрица, улавливающая солнечное и инфра­красное излучение и имеющая чрезвычайно развитую поверхность контакта для нагрева воздуха. Боковые и задняя стенки корпуса из оцинкованного железа име­ют тепловую изоляцию. Прозрачная изоляция — из спе­циального прочного полимерного материала с высокой пропускательной способностью для солнечного излуче­ния, устойчивого к ультрафиолетовому излучению. Обыч-

image080Рис. 59. Сушилка с воздухона­гревателем модульного типа:

1 — модуль воздухонагревателя;

2 — сушильный желоб; 3 — венти­лятор; 4 — воздухораспределитель;

5 — воздуховод

но модули шириной 4,2 и длиной 2,5 м соединяются по­следовательно. Две панели длиной по 14,5 м присоеди­нены к одному вентилятору, прогоняющему воздух через этот солнечный коллектор. Так, для сушилки с площа­дью поверхности коллектора 120 м2 достаточно одного вентилятора мощностью 3,5 или 5,5 кВт, производитель­ность сушилки 800 кг сырого или 400 кг высушенного продукта в день при среднедневной плотности потока солнечного излучения 19 МДж/м2 в день. Зерна помеща­ются в горизонтальном желобе, продуваемом нагретым воздухом. Аналогичные установки могут быть использо­ваны для сушки кукурузы и других зерновых, листьев та­бака.

Для сушки зерна в вентилируемом горизонтальном желобе или вертикальном бункере может использоваться нагретый воздух, температура которого всего на 2—3 °С (при высоте слоя до 4 м) или на 5—15 °С (в слое высо­той до 1,5 м) выше температуры окружающей среды. Ограничение высоты слоя обусловлено опасностью кон­денсации водяных паров в верхней части слоя, особенно в пасмурные дни с высокой влажностью воздуха.

Для сушки зеленых кормов и сена можно использо­
вать следующие методы: сушка горячим воздухом (300— 1000°С) или теплым (40—80°С); проветривание слабо подогретым воздухом (0—10°С); вентилирование непо — догретым наружным воздухом и сушка сена на земле в естественных условиях.

Расход энергии при сушке сена с использованием солнечной энергии меньше, чем при работе сушилки на жидком топливе, и приблизительно равен расходу энер­гии при сушке неподогретым воздухом. В системе при­меняется воздушный коллектор солнечной энергии, в ко­тором температура воздуха повышается на 20 °С в яркий солнечный день и на 1 °С в пасмурный облачный день. При этом влажность сена снижается на 5 % в пасмурный день. В качестве КСЭ могут быть использованы обычный остекленный КСЭ или сама черепичная крыша построй­ки, под которой смонтировано днище КСЭ и вентилято­ром прогоняется воздух.

Древесину строевого леса можно сушить в теплоизо­лированной камере объемом 65 м3, в которой на тележ­ке размещается до 10 м3 материала; с помощью венти­ляторов осуществляется циркуляция воздуха по замкну­тому контуру; воздух нагревается в коллекторе площа­дью 75 м2.

Солнечные кухонные печи. В южных районах печи для приготовления пищи, работающие на дефицитном топли­ве— угле, дровах, газообразном или жидком топливе, мо­гут быть заменены печами, в которых используется сол­нечная энергия или биогаз. Наиболее простую конструк­цию имеет солнечная печь типа «горячий ящик» (рис. 60). Печь представляет собой металлический ящик с тепло­изоляцией и полостью для размещения посуды для при­готовления пищи. Внутренняя поверхность полости обла­дает высокой отражательной способностью, а посуда должна иметь черный матовый цвет или специальное по­глощающее покрытие. Сверху печь снабжена съемной стеклянной крышкой. Печь может перемещаться на ко­лесиках и имеет рще одну крышку с отражателем и теп­ловой изоляцией. Положение этой крышки можно изме­нять, устанавливая ее вертикально или наклонно путем поворота вокруг шарнирных опор таким образом, чтобы обеспечить дополнительный поток отраженной солнечной радиации через стеклянную крышку внутрь ящика. Сол­нечное устройство такого типа при ярком солнце обеспе­чивает температуру не ниже 80—90 °С, а благодаря на-

Рис. 60. Солнечн&я печь типа «горячий ЯЩИК»;

image0811 — металлический ящик; 2 —теп­лоизоляция; 3 — лучепоглощающая полость для приготовления пищи; 4 — прозрачная крышка; 5 — коле­со; 6 — теплоизолированная крышка

image082Рис. 61. Плита с плоским сол­нечным коллектором; .

1 — плита; 2 — солнечный коллек­тор; 3 — аккумулятор теплоты; 4 — труба

линию тепловой изоляции теплопотери значительно сни­жаются и пища может вариться в течение длительного времени на солнце. Наиболее эффективно такую печь можно использовать для разогрева полуфабрикатов и ра­нее приготовленной пищи.

Однако в большинстве процессов приготовления пи­щи требуются более высокие температуры, которые мо­гут быть достигнуты только при применении оптических устройств для концентрации солнечной энергии. Во мно­гих случаях это нерентабельно, но, без сомнения, техни­чески возможно. В районах с сухим жарким климатом может использоваться солнечная печь с плоским коллек­тором солнечной энергии и аккумулятором теплоты (рис. 61). Для повышения эффективности следует исполь-

image083

Рис. 62. Плита с параболическим концентратором:

/ — тележка; І —столик; З—кастрюля; 4 — параболический концентраторі 5 _ ручка для поворота концентратора

зовать светопрозрачную крышку и отражатель. Посуда должна быть окрашена в черный матовый цвет. Теплоно­ситель в коллектор поступает по нижней трубке, а из не­го в аккумулятор — по верхней трубке.

Пример конструкции солнечной печи с параболо-ци-

линдрическим концентратором показан на рис. 62, о и б.

Солнечная печь для приготовления пищи включает четырехколесную тележку, переносной столик с отверсти­ем для кастрюли, параболический концентратор, закреп­ленный шарнирно на раме тележки. Положение отража­теля в течение дня регулируется путем поворота вокруг оси в шарнирах. Для облегчения регулировки на его оси следует поместить маленькое зеркальце, а в плоскости столика печи сделать полупрозрачное окошко из мато­вого или цветного стекла — отраженный зайчик должен все время попадать в это окошко. Это будет означать, что солнечные лучи концентрируются на донышке каст­рюли. Для снижения тепловых потерь вокруг боковой необлучаемой поверхности кастрюли должна быть раз­мещена тепловая изоляция. Отражатель может быть из­готовлен из пластмассовой тонкостенной оболочки с на­клеенными фацетными плоскими зеркальцами.

Если эту печь использовать в тропической зоне, то во избежание затенения отражателя его необходимо выне­сти в сторону и фиксировать и регулировать его поло­жение с помощью шарнирно закрепленной оси и рыча­гов (рис. 62, б).

На широте 40—45° с. ш. для приготовления порции на четырех человек с помощью этой печи требуется 15— 20 мин для приготовления омлета, 45—60 мин для вар­ки риса, 1,5—2 ч для приготовления жареного мяса. В нерабочем состоянии отражатель может быть зафик­сирован и установлен в вертикальное положение. Это не­обходимо для предотвращения возможного повреждения его зеркальной поверхности.

Каков срок службы солнечных установок?

Это зависит от многих факторов, в том числе от ка­чества изготовления и монтажа установки, включая пра­вильный выбор материалов для изготовления солнечных коллекторов, аккумуляторов теплоты, трубопроводов, качества уплотнений и т. п. Важное значение имеет вы­бор теплоносителя и применение соответствующих анти­коррозионных добавок, соблюдение требуемых скоростей потока в трубах, предотвращение попадания кислорода воздуха, вызывающего коррозию. Срок службы также зависит от предотвращения замерзания теплоносителя в трубопроводах и других элементах оборудования, под­верженных воздействия» наружного воздуха. Некоторые материалы, в частности полимерные пленки, быстро ста­реют под действием ультрафиолетового излучения. Ос­новной элемент гелиоустановки — солнечный коллек­тор — обычно рассчитан на 15—20 лет работы при усло­вии правильного монтажа и эксплуатации. Баки-аккуму­ляторы закрытого типа должны иметь катодную защиту от коррозии и могут эксплуатироваться в течение 20 лет. Аккумуляторы теплоты, работающие в условиях атмос­ферного давления и изготовленные из пластиков, армиро­ванных стекловолокном, могут служить длительное вре­мя при соблюдении правил эксплуатации. До сих пор эксплуатируются солнечные дома, построенные 30 и бо­лее лет назад.

Срок службы водонагревателей с естественной цирку­ляцией теплоносителя и компактных водонагревателей составляет 10—15 лет. При высоком солесодержании воды и вообще ее низком качестве срок службы коллектора мо­жет быть весьма непродолжительным из-за возможных повреждений, особенно в местах соединений — и уплотне­ний. Прозрачные пластмассы и полимерные пленки ста* реют по истечении 7—10 лет.

Какие основные правила техники безопасности применимы к гелиоустановкам?

При перегреве аккумулятора теплоты возможно об­разование пара, для предотвращения повышения давле­ния предусматривается предохранительный клапан. Для автоматического удаления воздуха — из контура солнечно­го коллектора в верхней точке должен быть расположен воздушник. Все материалы должны выдерживать ііад — снмальныс температуры, которые могут иметь место щ>и холостом ходе (без теплоносителя) коллектора. Эгоотно — носится к материалам тепловой изоляции и деталям кор­пуса, соприкасающимся с лучепоглощающей поверхно­стью, температура которой может достигать 170-^2$001С в зависимости От типа коллектора.

СОЛНЕЧНЫЕ ОПРЕСНИТЕЛЬНЫЕ, ХОЛОДИЛЬНЫЕ И ВОДОПОДЪЕМНЫЕ УСТАНОВКИ

Солнечные опреснители. Население ряда районов юга страны испытывает острый дефицит пресной воды, и в то же время там имеются значительные запасы соленых вод, непригодных для питья. Обессоливание минерали­зованных вод или опреснение морской воды успешно осу­ществляется с помощью солнечной энергии. Первая в ми­ре гелиоустановка для обессоливания загрязненных ми­нерализованных вод была построена в поселке Лас Салинас на севере Чили еще в 1872г. и в течение 36 лет снабжала пресной водой рудник, давая в день 20 м3 питьевой воды. Это была простая установка бассейново­го типа, занимавшая площадь 4600 м2.

Устройство и принцип работы солнечной опреснитель­ной установки бассейнового типа наглядно иллюстриру­ются схемой, приведенной на рис. 63. Морская или мине­рализованная вода, заполняющая мелкий бассейн с теплоизоляцией и гидроизоляцией, под действием по­глощаемой солнечной энергии испаряется, а образую­щиеся водяные пары конденсируются на наклонной стек­лянной крыше бассейна, и капли дистиллята стекают

image084

Вис. 63. Солнечный опреснитель (дистиллятор) бассейновсіго типа:

/ — минерализованная вода; 2 —бассейн; 3 — теплоизоляция; 4 — гидроизоля­ция; 5 — стеклянная крыша; б —конденсат; 7—приемный желоб; 8 — трубка

для дистиллята

в приемный желоб, откуда этот дистиллят по трубкам через гидрозатвор отводится в емкость для его сбора. На рис. 64 показана несколько измененная конструкция сол­нечного опреснителя, имеющего двойную полусфериче­скую оболочку из прозрачной пластмассы. Внутри обо­лочки движется минерализованная вода, подводимая по нижнему патрубку и отводимая по верхнему патрубку. Благодаря этому производится предварительный подо­грев воды за счет теплоты конденсации паров.

Первая в СССР опытно-производственная солнечная установка для обессоливания минерализованных вод бы­ла сооружена в 1968 г. в поселке Бахарден в пустыне Кара-Кум в Туркмении. Она имела площадь 600 м2, ле­
том давала от 2,4 до 4 л пресной воды в день с 1 м2 пло­щади бассейна и обслуживала овцеводческую ферму.

image085

Начиная с 60-х годов в различных странах был сооружен ряд крупных солнечных опреснительных установок бассейнового типа. В настоящее время в мире эксплуатируется не менее 25 мощных солнечных установок для опреснения морской воды с единичной площадью бассейна от 100 до 30000 м2 с суммарной площадью бо­лее 50 тыс. м2 и общей производительностью более 200 м3 пресной воды в день. Наиболее крупная солнечная опреснительная установка эксплуатируется с 1984 г. в Абу-Даби (Объединенные Арабские Эми-

І — морская вода; 2 — корпус бассейна; 3 — теплоизоляция; 4 — гидроизоляция; 5 — внутренняя прозрачная оболочка; 5 —конденсат; 7 — дистиллят; 8 — отвод дистиллята; 9 —наружная прозрачная оболочка; /9 —холодная вода 11 — на*

гретая вода

раты), которая была разработана совместно США и Японией. Это установка нового типа, и расчетная производительность составляет 120 м3 пресной воды в день, а фактически достигнутая среднегодо­вая производительность 80 м3 в день. К числу крупных солнечных опреснительных установок относятся четыре установки в Греции — на островах Патмос (площадь бассейна 8500 м2, производительность 40 м3 дистиллята в день), Кимолос и Сими (площадь 2600—2800м2), две установки в Кубер Педи в Австралии производительностью 14 м3 в день, установка в Пакистане (Гвадар) площадью 16 000 м2 и про­изводительностью 60 м3 пресной воды в день. Установки большой производительности построены также в Испании, Индии и других странах.

Существующие типы солнечных установок для опрес­нения морской воды и обессоливания минерализованной воды можно разделить на три группы:

1) опреснители бассейнового типа, в которых солнеч­ная энергия используется непосредственно для испаре­ния воды в процессе дистилляции. В качестве дополни­тельного источника энергии’ может использоваться, на­пример, нагретая охлаждающая вода;

2) установки с процессами увлажнения воздуха и конденсации паров и многократным использованием солнечной энергии в многоступенчатых или параллельно включенных расширителях-испарителях, при этом пере­нос водяных паров осуществляется вследствие конвекции воздуха;

3) установки, в которых источником энергии служит солнечная радиация, но принцип работы их подобен обычным топливным опреснительным установкам, при­чем движение рабочей жидкости и водяных паров осу­ществляется с помощью насоса и вакуум-насоса.

Для нагревания от 20 до 50 °С 1 кг или 1 л воды и ее испарения требуется около 2400 кДж теплоты или 670 кВт-ч на 1 м3 воды. В течение летнего солнечного дня на 1 м2 поступает около 20 МДж солнечной энергии, при КПД солнечного опреснителя 0,36 за день испаряет­ся слой воды толщиной 3 мм.

Благодаря более эффективному использованию теп­лоты (в частности, для предварительного подогрева опресняемой воды за счет теплоты конденсации водяных паров) в многоступенчатых солнечных опреснитель­ных установках ее расход значительно ниже теоретиче­ского (670 кВт-ч на 1 м3) и составляет всего 50— 60 кВт-ч/м3, а в системах с применением обратного ос­моса и электродиализа и того меньше—5—15 кВт-ч/м3. В установках последних типов потребление энергии про­порционально солесодержанию воды, и при дистилляции загрязненной маломинерализованной воды расход энер­гии составляет 1 кВт-ч/м3.

Для крупномасштабных солнечных опреснительных установок с суточной производительностью 100—200 м3 воды в день многоступенчатые установки имеют преиму­щество, так как они потребляют меньше энергии на пе­рекачку, и оборудование в меньшей степени поддается коррозии. В уже упоминавшейся крупной опреснитель­ной установке в Абу-Даби используются вакуумирован — ные трубчатые стеклянные коллекторы площадью 1862 м2. В них вода нагревается до 80 °С и выше и по­дается в тепловой аккумулятор, благодаря чему обеспе­чивается непрерывный процесс дистилляции. Температу­ра воды, поступающей в испарители, равна 75—80 °С. Требуемый расход теплоты составляет 45 кВт-ч на 1 м3 дистиллята, а расход электроэнергии 7 кВт-ч/м3. При­менение солнечных батарей позволит существенно сни­зить стоимость получаемой воды.

Солнечные холодильные и водоподъемные установки. Принцип работы холодильных установок описан в гл. 3.

Холод можно получать в солнечных абсорбционных холодильных установках периодического действия. Для установок этого типа характерно совмещение в одном ап­парате двух элементов системы. Так, генератор и абсор­бер совмещаются с коллектором солнечной энергии, а ис­паритель— с конденсатором, однако эти функции они выполняют в разное время суток. В дневное время кол­лектор солнечной энергии служит генератором, а ночью — абсорбером. Под действием поглощенной сол­нечной энергии днем из крепкого раствора аммиака в во­де, находящегося в коллекторе, выделяется аммиачный пар, который затем превращается в жидкость в конден­саторе. Жидкий аммиак накапливается в специальной емкости с водяной рубашкой. В ночное время происхо­дит охлаждение коллектора при открытой крышке и дав­ление в системе падает. Аммиак в емкости испаряется, отбирая теплоту у воды в кожухе конденсатора-испари­теля, а пар поступает в абсорбер-коллектор, где он по­глощается слабым раствором, образуя крепкий водоам — миачный раствор. При этом вода в кожухе охлаждается до температуры —5 °С и превращается в лед. На сле­дующий день цикл повторяется.

Принцип работы другой холодильной установки пе­риодического действия, обеспечивающей температуру 4 °С в камере для хранения вакцины, основан на процес­сах адсорбции-десорбции в системе цеолит—вода (рис 65). Днем в солнечном коллекторе (КСЭ), содер­жащем насыщенный водой цеолит, в результате повы­шения температуры давление в КСЭ становится выше давления паров, соответствующего температуре в кон­денсаторе. Часть воды из цеолита десорбируется, и пары конденсируются в конденсаторе. Под действием силы тя­жести вода стекает в испаритель, помещенный в тепло­изолированный ящик с крышкой.

В ночное время температура в КСЭ постепенно сни­
жается и давление в нем становится ниже давления па­ров при температуре в испарителе Ти. При этом находя­щаяся в нем вода испаряется и образующиеся водяные пары поступают в КСЭ и там адсорбируются цеолитом. Процесс идет с поглощением теплоты, и при этом возни­кает охлаждающий эффект в испарителе И даже может образовываться лед. Вентиль обеспечивает переключение контуров циркуляции днем и ночью. Охлаждаемые меди­каменты помещают в ящик.

image086Рис. 65. Солнечная холодильная камера для хранения вакцины:

/ — солнечный коллектор; 2 — конден-
сатор; 3 — испаритель; 4 — теплоизоли-
рованная камера; 3 — крышка; 6 — ам-
пулы с вакциной; 7 — вентиль

В солнечных водоподъемных установках для привода насоса используются солнечные батареи или тепловые двигатели, работающие по термодинамическо­му циклу с низкокипящей/рабочей жидкостью. Мощность привода зависит от производительности1 и напора насоса, определяемого глубиной скважины, обычно достаточно 3—15 кВт.

Какие преимущества дает совмещение солнечных коллекторов є крышей дома?

Уменьшается общая стоимость дома и иноверного оборудования. При качественном монтаже установки эксплуатационные качества крыши не ухудшаются,