Category Archives: BIOMASS NOW — SUSTAINABLE GROWTH AND USE

Pressurized Solvent Extraction (PSE)

Pressurized solvent extraction or »accelerated solvent extraction," employs temperatures that are higher than those used in other methods of extraction, and requires high pressures to maintain the solvent in a liquid state at high temperatures. It is best suited for the rapid and reproducible initial extraction of a number of samples. The solid biomass sample is loaded into an extraction cell, which is placed in an oven. The solvent is then pumped from a reservoir to fill the cell, which is heated and pressurized at programmed levels for a set period of time. The cell is flushed with nitrogen gas, and the extract, which is automatically filtered, is collected in a flask. Fresh solvent is used to rinse the cell and to solubilize the remaining components. A final purge with nitrogen gas is performed to dry the material. High temperatures and pressures increase the penetration of solvent into the material and improve metabolite solubilization, enhancing extraction speed and yield. Moreover, with low solvent requirements, pressurized solvent extraction offers a more economical and environment-friendly alternative to conventional approaches

As the material is dried thoroughly after extraction, it is possible to perform repeated extractions with the same solvent or successive extractions with solvents of increasing polarity. An additional advantage is that the technique can be programmable, which will offer increased reproducibility. However, variable factors, e. g., the optimal extraction temperature, extraction time, and most suitable solvent, have to be determined for each sample (Kaufmann, 2002; Tsubaki, 2010; Sarker, 2006).

Microwave-assisted extraction (MAE) or simply microwave extraction is a relatively new extraction technique that combines microwave and traditional solvent extraction. The microwave energy has been investigated and widely applied in analytical chemistry to accelerate sample digestion, to extract analytes from matrices and in chemical reactions. Application of microwaves for heating the solvents and plant tissues in extraction process, which increases the kinetic of extraction, is called microwave-assisted extraction. Microwave energy is a non-ionizing radiation that causes molecular motion by migration of ions and rotation of dipoles, without changing the molecular structures if the temperature is not too high. Nonpolar solvents, such as hexane and toluene, are not affected by microwave energy and, therefore, it is necessary to add polar additives. Microwave-assisted extraction (MAE) is an efficient extraction technique for solid samples which is applicable to thermally stable compounds accepted as a potential and powerful alternative to conventional extraction techniques in the extraction of organic compounds from materials. The microwave-assisted extraction technique offers some advantages over conventional extraction methods.

Compared to conventional solvent extraction methods, the microwave-assisted extraction (MAE) technique offers advantages such as improved stability of products and marker compounds, increased purity of crude extracts, the possibility to use less toxic solvents, reduced processing costs, reduced energy and solvent consumption, increased recovery and purity of marker compounds, and very rapid extraction rates.

The use of MAE in natural products extraction started in the late 1980s, and through the technological developments, it has now become one of the popular and cost-effective extraction methods available today, and several advanced MAE instrumentations and methodologies have become available, e. g., pressurized microwave-assisted extraction (PMAE) and solvent-free microwave-assisted extraction (SFMAE).

Comparison between conventional and MAE extraction method

This technique has been used successfully for separation of phenolic compounds from types of biomass, polyphenols derivates, pyrimidine glycosides, alkaloids, terpenes, and so.

In most cases, the results obtained suggested that the microwave assisted method was more convenient even compared to the ultrasound extraction method.

Pyrimidine glycosides

The studies regarding the microwave extraction of vicine and convicine (toxic pyrimidine glycosides) from Vicia faba using a methanol: water mixture (1:1 v/v) involves two successive microwave irradiations (30 s each) with a cooling step in between. No degradation could be observed under these conditions, but further irradiation was found to decrease the yield of vicine and convicine. The yield obtained was 20% higher than with the conventional Soxhlet extraction method.

Alkaloids Sparteine, a lupine alkaloid, was extracted from Lupinus mutabilis, with methanol: acetic acid (99:1, v/v) in a common microwave oven and the microwave irradiation program used one to five cycles of 30 s with a cooling step in between and conduct to 20% more sparteine than was obtained with a shaken-flask extraction using the same solvent mixture for 20 min.

Terpenes Five terpenic compounds: linalool, terpineol, citronellol, nerol and geraniol, associated with grape (Vitis vinifera) aroma was extracted from must samples by MAE (Carro et al.,1997). Was investigated the influence of the parameters: extracting solvent volume, extraction temperature, and amount of sample and extraction time. Several conditions were fixed, such as the extraction time (10 min) and the applied power (475 W). The solvent volume appeared to be the only statistically significant factor, but was limited to 15 mL by the cell size. The highest extraction yield was obtained with both the solvent volume and the temperature at their maximum tested values. In contrast, the sample amount had to be minimized in order to obtain the best recoveries. The final optimized extraction conditions were as follows: 5 mL sample amounts extracted with 10 mL of dichloromethane at a temperature of 90°C for 10 min with the microwave power set at 50% (475 W).

Steroids Recently, was demonstrated that only 30-40 s were sufficient to extract ergosterol quantitatively by MAE using 2 mL methanol and 0.5 mL 2 M sodium hydroxide. Microwave irradiation was applied at 375W for 35 s and the samples were cooled for 15 min before neutralization with 1 M hydrochloric acid followed by pentane extraction. The yield was similar to or even higher than that obtained with the traditional methanolic extraction followed by alkaline saponification and pentane extraction.

Alkaloids The extraction of two alkaloids cocaine and benzoylecgonine by focused MAE was optimized by taking into account several parameters such as the nature of the extracting solvent, particle size distribution, sample moisture, applied microwave power and radiation time. MAE was found to generate similar extracts to those obtained by conventional SLE but in a more efficient manner. Indeed, 30s were sufficient to extract cocaine quantitatively from leaves, using methanol as solvent and a microwave power of 125 W. (Kaufmann, 2002).

Phenolic compounds

In recent years, synthetic antioxidants were reported to have the adverse effects such as toxicity and carcinogenicity and this situation has forced scientists to search for new natural antioxidants from herbs or the other materials. Phenolic compounds, the most important bioactive compounds from plant sources, are among the most potent and therapeutically useful bioactive substances, providing health benefits associated with reduced risk of chronic and degenerative disease (Luthria, 2006; Tsubaki et al., 2010; Proestos, 2008).

Extraction is one of the most imperative steps in the evaluation of phenolic compounds from plant. Often is done a saponification prior to the extraction step because is necessary to cleave the ester linkage to the cell walls (Robbins, 2003).

The capability of a number of extraction techniques have been investigated, such as solvent extraction and enzyme-assisted extraction. However, these extraction methods have drawbacks to some degree. For example, solvent extraction is time consuming and enzyme in enzyme assisted extraction is easy to denature. In the case of Soxhlet extraction, the extraction time vary from 1 minute to 6 h. Ultrasonic is one of the most industrially used methods to enhance mass transfer phenomena (Japon-Lujan et. al. 2006; Luthria, 2006; Perez-Serradilla, 2007). Meanwhile, microwave assisted extraction heats the extracts quickly and significantly accelerates the extraction process (Martinez, 1996; Kojima, 2004; Patsias, 2009). Simultaneous ultrasonic/microwave assisted extraction (UMAE) coupled the advantage of microwave and ultrasonic, presenting many advantages (Kojima, 2004).

Extraction of phenolic compounds from solid samples is usually carried out by stirring (Luthria, 2006; Nepote, 2005), although the use of auxiliary energies has demonstrated to accelerate the process (Japon-Lujan, et. al.2006; Perez-Serradilla, 2007). Microwave-assisted extraction (MAE) is the process by which microwave energy is used to heat polar solvents in contact with solid samples and to partition compounds of interest between the sample and the solvent, reducing both extraction time and solvent consumption.

The conventional liquid-solid extraction techniques, such as heat reflux extraction (HRE), ultrasonic extraction (UE) and maceration extraction (ME), are discommodious, laborious, time-consuming and require large volumes of toxic organic solvents. So increasing attention is paid to the development of more efficient extraction methods for the rapid extraction of active compounds from materials.

The current analytical methods used to extract phenolic compounds from liquid samples are based on liquid-liquid extraction (LLE). Although this technique offers efficient and precise results, it is relatively time-consuming, possibly harmful due the use of large volume of organic solvents (frequently toxic) and highly expensive. For these reasons, there is an increasing tendency to replace LLE by solid-phase extraction (SPE) for liquid samples. SPE was developed in the 1980s, and has emerged as a powerful tool for chemical isolation and purification. This methodology is an alternative extraction to LLE due to it reduces organic solvents consumption, the length of analysis and it can be automated (Martinez, et. al., 1996; Kojima, 2004; Patsias, et. al., 2009).

Although most attention has been focused on the determination of phenolic compounds in aqueous samples, more substituted phenols, such as pentachlorophenol, show limited transport in water and they are more likely absorbed in sediments and soils. This fact contributes to the persistent of these compounds in the environment and it results in high concentrations of them that could affect aquatic and earth organism. For extraction, Soxhlet extraction is one of the most popular techniques for isolating phenolic compounds from solid samples, due to its simplicity, inexpensive extraction apparatus. Despite the good results obtained with this methodology, Soxhlet extraction makes the analysis procedure excessive time consuming. Moreover, it requires large amount of hazardous organic solvents.

Ultrasonic extraction is another conventional technique to extract analytes from solid samples. Although sonication is faster than Soxhlet extraction, it also requires large volumes of toxic and expensive organic solvents.

The studies show that the compounds are extracted more effectively when the energy provided by microwave is employed (Perez-Serradilla, 2011).

Chemical oxygen demand (COD)

Natural organic detritus and organic waste from wastewater treatment plants, failing septic systems, and agricultural and urban runoff, acts as a food source for water-borne bacteria. Bacteria decompose these organic materials using dissolved oxygen. The determination of Chemical Oxygen Demand (COD) is widely used in municipal and industrial laboratories to measure the overall level of organic contamination in wastewater. The contamination level is determined by measuring the equivalent amount of oxygen required to oxidize organic matter in the sample.

In the COD method, the water sample is oxidized by digesting in a sealed reaction tube with sulphuric acid and potassium dichromate in the presence of a silver sulphate catalyst. The amount of dichromate reduced is proportional to the COD. A reagent blank is prepared for each batch of tubes in order to compensate for the oxygen demand of the reagent itself.

Over the range of the test a series of colors from yellow through green to blue are produced. The color is indicative of the chemical oxygen demand and is measured using a photometer. The results are expressed as milligrams of oxygen consumed per liter of sample [34].

Test Procedure

i. Mixed reagent. Potassium dichromate solution. To a 1000 mL volumetric flask, add 42.256 ± 0.001 g of potassium dichromate (previously dried for one hour at 140 — 150 oC). To the flask, add approximately 500 mL of water and mix the contents to dissolve. Then add 33.3 g de HgSO4 to the potassium solution. Add in an ice bath slowly 167 mL pure H2SO4. When the mixture has cooled, stir the mixture until the solid dissolves and dilute to one liter.

ii. Silver sulphate in sulphuric acid (10 g). To a glass bottle, add 10.0 ± 0.1 g of silver sulphate and 1000 ± 10 mL of sulphuric acid and stopper. To obtain a satisfactory solution, swirl the initial mixture and allow it to stand overnight. Swirl the contents again until all the silver sulphate dissolves. This solution may be stored in the dark at room temperature for up to an indefinite period.

iii. Pipette 2.0 mL sample into cuvette with 2.0 mL of the mixed reagent solution and 1.0 mL of the silver sulphate in sulphuric acid solution. Invert cuvettes carefully.

iv. Heating reactor for determination of COD for about 30 minutes.

v. Heat cuvettes for 2 h at 150 °C.

vi. read cuvettes in the spectrophotometer at 620 nm.

Control of pests and diseases

Attainable biomass production of a crop, as determined by its genetics and actual resource levels provided in a particular field situation, is usually reduced by the action of pathogens and herbivores. Especially in genera with species that hybridize easily, such as willow, the relationship between plant breeding and pest and disease control is strong, because such genera in general attract many kinds of insects and pathogens. Plants may be well adapted to a specified range of abiotic conditions, which display a site specific variation. However, pests and diseases are biotic factors which not only vary in space and time, but may also co­evolve with plants. Consequently, potentially pathogenic organisms may be present and may do little harm for longer periods in a willow stand, until virulent strains develop which may be very clone specific. For instance, susceptibility to defined pathotypes of leaf rust (Melampsora epitea) is rather clone specific [73]. Consequently, it is important that new clones are released constantly by breeding programs and that a broad genetic base is used, targeting a broad tolerance to a range of pathogens. Poplar breeding programs in Western Europe previously have underrated this issue, resulting in the destruction of many poplar stands by leaf rust varieties that managed to adapt to the poplar clones [74]. In willow breeding, this issue was acknowledged early. Development of new high producing willow clones was initiated in Sweden in 1987 by Svalof-Weibull AB [33]. The main purpose of the breeding program was to develop high yielding clones resistant towards pests, frost, and diseases, and with morphology suitable for mechanical harvesting. From 1996 to 2002 several new clones were developed in cooperation between Svalof-Weibull and Long — Ashton research in UK, also with a strong focus on pest and disease resistance [34]. Strong advances were made early with regard to leaf rust in willow [75] and resistance of willow to several insect species has also been exploited [76, 77]. Production losses between 20 and 40% have been recorded in willow after defoliation by insects [78]. Willow, however, usually recovers well after defoliation, and as the population dynamics of many insects is erratic, and under control of very many factors, damage prevention by means of breeding towards resistance has been chosen, instead of the use of pesticides. Salix has probably the best environmental profile among the arable bioenergy crops available today, partly because neither fungicides nor insecticides are used in the production. This environmental profile is largely an outcome of plant breeding because resistance to pests and diseases, such as leaf rust and certain insects, has been highly prioritized since commercial breeding started in Sweden 25 years ago [79, 80].

Bioprocess Modeling and Control

Mihai Caramihai and Irina Severin

Additional information is available at the end of the chapter http://dx. doi. org/10.5772/55362

1. Introduction

The bioprocess advancement is determined by the living cells capabilities and characteristics, the bioreactor performance as well as by the cultivation media composition and the main parameters evolution. The high metabolic network complexity inside the cells often determine very sophisticated, non-linear growth and product formation kinetics, with further consequences on the bioprocess behavior, but at the same time on the product quality and yield.

The key issue of this rather complicated situation is the use of modeling and further on of computer assisted control as a powerful tool for bioprocess improving. The process models, as relationships of the input, output and inner variables, though incomplete and simplified, can be effective to describe the phenomena and the influences of great importance for control, optimization and better theoretical knowledge. The function of any biological model is to describe the metabolic reactions rates and their stoichiometry on the basis of bioreactor conditions, with the main difficulties-the identification of principal factors affecting cellular growth and bioproduct formation, and the building up of a suitable model structure for the intracellular processes.

Moreover the scheduling, supervision and automatic control in modern bioprocessing is done by advanced process control systems, where all the functions are implemented in software (in accordance with the Figure 1). The main bioprocess control attributes are: handling of off-line analyses; recipe and scheduling; high level overall control; state and parameters estimation; simulation; prediction; optimization.

For the industrial developments the central and manifold objective of the computer control is the realization of the economic interests in assuring high operational stability, process reproducibility and increased product yield together with the maintaining of rigorous safety and the implementation of the GMP or environmental regulations, important requests in modern biomanufacture imposed by the product quality improving needs.

Подпись: Chapter 6

© 2013 Caramihai and Severin, licensee InTech. This is an open access chapter distributed under the terms of the Creative Commons Attribution License (http://creativecommons. org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Treatment technology

At present, treatment of textile wastewater mainly involves physical and/or chemical processes. These include coagulation and flocculation (Harrelkas et al., 2009), precipitation (Solmaz et al., 2007), adsorption (Sayed and Ashtoukhy, 2009), membrane filtration and nanofiltration (Miranda et al., 2009), ion exchange (Wu et al., 2008), ultrasonic mineralization (Maezawa et al., 2007) and electrolysis (De Jonge et al., 1996). While these methods are often costly, they remove the pollutants by transferring them from one phase to another. Some of them generate highly concentrated sludge, hence creating disposal problems (Pearce et al., 2003) that may lead to soil contaminations. Excessive use of chemicals in dye treatment creates secondary pollution problems to the environment.

Process

COD (g/L)

BOD (g/L)

TS (g/L)

TDS (g/L)

pH

Color (ADMI)

Desizing

4.6-5.9

1.7-5.2

16.0-32.0

Scouring

8

0.1-2.9

7.6-17.4

10—13

694

Bleaching

6.7-13.5

0.1-1.7

2.3-14.4

4.8-19.5

8.5-9.6

153

Mercerising

1.6

0.05-0.10

0.6-1.9

4.3-4.6

5.5-9.5

Dyeing

1.1-4.6

0.01-1.80

0.5-14.1

0.05

5-10

1450-4750

Bleaching and Dyeing*

0.2-5.5

2.0-3.0

0.1-5.0

2-10

280-2000

*Characterization of textile wastewater in Malaysia (Ahmed et al., 2005; Ibrahim et al., 2009)

Table 1. Characteristics of textile wastewater (Bisschops and Spanjers, 2003; Dos Santos et al., 2006)

Treatment using ozonation, Fenton’s reagent, electrochemical destruction and photocatalysis are some of the emerging techniques reported to have potential use for decolorization (Faouzi et al., 2006; Ay et al., 2009). However, such technologies usually involve complicated procedures and are economically unattainable (Chang and Lin, 2000).

Among the available techniques, the one that can offer effective pollutant removal at a lower cost is the desirable alternative. Of these, biological treatment is the obvious choice due to the relatively low operating cost.

While a conventional aerobic biological process is incapable of treating textile wastewater, studies have shown that the integration of anaerobic and aerobic processes are able to provide complete mineralization of colored substances (Knackmuss, 1996; Melgoza et al., 2004; van der Zee and Villaverde, 2005). It can be done by using either two separate anaerobic and aerobic reactors (Khelifi et al., 2008) or using integrated anaerobic/aerobic treatment in a single reactor (Frijters et al., 2006; Cinar et al., 2008). The wastewater is initially treated under an anaerobic condition followed by an aerobic condition. Under the anaerobic condition, the N=N bond of the azo dyes are cleavaged, leading to the production of amines, the colorless byproducts. This is followed by complete mineralization under the aerobic condition. Different forms of biomass (i. e. suspension, film and granules) have been used in different types of reactor in the studies.

Experimental facilities

The two-stage fixed-bed quartz reactor

The fluidized bed gasifier

Lignocelluloses Feedstock Biorefinery as Petrorefinery Substitutes

Hongbin Cheng and Lei Wang

Additional information is available at the end of the chapter http://dx. doi. org/10.5772/51491

1. Introduction

1.1. Lignocelluloses feedstock (LCF) biorefinery

1.1.1. Background

The material needs from our society are reaching the crisis point, as the demand for resources will soon exceed the capacity of the present fossil resource based infrastructure [1]. Currently, fossil-based energy resources, such as petroleum, coal, and natural gas, are responsible for about three quarters of the primary energy consumption in our world. While decreasing crude-oil reserves, enhanced demand for fuels worldwide, increased climate concerns about the use of fossil-based energy carriers, and political commitment, the focus has recently turned to develop the utilization of renewable energy resources [2]. Gullon et al. [3] described the variety of problems on present social, economic and technological situation, which including: the fear for a shortening of the supplies of basic resources, as the population growth; the increasing per capita demands of the developing economies for goods and energy, derived from the increasing purchase power of the population; environmental challenges, especially those related to effects of greenhouse gas emissions (emphasis on CO2) on the global climate; the national security issues surrounding reliance on imported oil [4].

On our market, nowadays, there are more than 2500 different oil-based products. The petroleum crisis of the 1970s resulted in a shift from total reliance on fossil resources and simultaneously triggered research into biomass based technologies. As a result of the oil crisis, renewable resources became a popular phrase [5]. Currently, the most of energy requirements in the world are still met by fossil fuels. The limited deposits of these fossil fuels coupled with environmental problems have prompted people to look for sustainable resources as alternatives to meet the increasing energy demand. Bio-energy production has

© 2013 Cheng and Wang, licensee InTech. This is an open access chapter distributed under the terms of the Creative Commons Attribution License (http://creativecommons. org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

the advantage of forming smaller amounts of greenhouse gases compared to the conversion of fossil fuels, as the carbon dioxide generated during the energy conversion is consumed during subsequent biomass re-growth [6]. However, simply providing sustainable and non­polluting energy will not be enough. In our life, clothes, shelter, tools, medications and so on are all, to a greater or lesser degree, dependent on organic carbon. As fossil-based resources will be replaced, new sources of organic carbon have be found or alternate applications and processing of existing sources must be developed. The challenge is to find replacements not only for current usage, but also for the even future greater energy consumption, with a likely concomitant increase in biomass demand for manufacturing [7].

Present promising commodity chemicals and materials from LCF biorefinery

2.1.2. Lactic acid

Lactic acid represents a chemical with a small world market, and the market for traditional applications of lactic acid is estimated to be growing at about 3-5% annually. New products based on lactic acid may increase the world market share significantly, which includes the use of derivatives such as ethyl esters to replace hazardous solvents like chlorinated hydrocarbon solvents in certain industrial applications. In theory, one mole of glucose results in almost two moles of lactic acid. The recovery process for lactic acid is much more sophisticated than that of the ethanol fermentations, involving various precipitations, chromatographic and distillation steps [5].

Lactic acid can be converted to methyl lactate, lactide, and polylactic acid (PLA) by fermentation [89]. The PL A is a biodegradable polymer used as environmentally friendly biodegradable plastic, which can be the replacement for polyethylene terephthalates (PETs) [90]. Recently, attempts have been made to produce PLA homopolymer and its copolymer by direct fermentation by metabolically engineered [91], shows a great potential for utilizing lignocellulosic feedstock for the key biodegradable polymers. Efforts are also under way to develop efficient processes for converting biologically produced lactic and hydroxypropionic acids to methacrylic and acrylic acids [88].

Lactic acid can be produced either chemically or by microbial fermentation. A major disadvantage for chemical synthesis is the racemic mixture of lactic acid. Microbial fermentation offers both utilization of renewable carbohydrates and production of pure L­or D-lactic acid depending on the strain selected. Currently, most of lactic acid production is produced mainly from corn starch. However, the use of lignocellulosic feedstock for lactic acid production appears to be more attractive because they do not impact the food chain for humans. But the process for converting lignocellulosic feedstock into lactic acid is not cost efficient due to the high cost of cellulase enzymes involved in cellulose hydrolysis [92, 93]. In addition, the main bottleneck during the hydrolysis of lignocellulosic feedstock by cellulases is the inhibition on cellulase by glucose and cellobiose, which remarkably slows down the rate of lignocellulosic feedstock hydrolysis [94]. Economic improvements on the process are mainly focused on increasing the lactic acid tolerance, reducing the requirements for complex and cost intensive growth supplements and products recovery [95].

Distribution of acidic compounds in bio-oil fractions

The high content of carboxylic acids in bio-oil is one of the main reasons for its corrosiveness, which damages storage tanks, boilers, and gas turbines. As a consequence, detailed research on the separation of acidic compounds has been carried out under the condition of distillation at 50 °C.

The carboxylic acid content in the refined bio-oil was used to estimate the separation efficiency. Guo et al. (2009b) chose five major acids in bio-oil and studied their separation characteristics. As shown in Fig. 3, the amount of acetic acid, the most abundant acid in bio­oil, was reduced to 1.9 wt% and 0.96 wt% in the MF and HF, respectively. The results indicated that acidic compounds could be effectively separated from the crude bio-oil by means of molecular distillation technology. The LF, which was rich in water and carboxylic acids, was valuable for further catalytic esterification of bio-oil acidic compounds. Both MF and HF could be further upgraded to produce high-quality fuels.

Biosorption process with bacteria in batch system

Microbial growth and substrate utilization expressions can be incorporated into mass balances to yield equations that can be used to predict effluent microorganism and substrate concentrations, and thus process efficiency. Continuous flow systems are grouped into two broad categories, suspended-growth and attached-growth processes, depending on whether the process microorganisms are maintained in suspension, or are attached to an inert medium (e. g., rocks, sand, granular activated carbon, or plastic materials). Attached-growth processes are also called fixed-film processes or biofilm processes.

Biosorption has provided an alternative process to the traditional physico-chemical methods, utilizing inexpensive biomass to sequester toxic heavy metals. In the 80 last decades, many researchers have focus on the treatment of wastewater containing heavy metals by the use of living organisms and/or their biomass. Many types of organisms such as bacteria, fungi, yeast and algae or their biomasses, have been used for metal uptake [42].

Biosorption tests batch system are carried out with each strain selected in 500 mL erlenmeyer flask, add 90 mL of a solution containing the metal to study, at an initial concentration established and adding 10 mL culture of 24 h of each strain, with a biomass concentration of 1 g/L. Target used 100 mL of metal solution without bacteria. Samples were
analyzed in duplicate for each strain. Is used nephelometer of McFarland to estimate the number of cells/mL [40, 42]. The conditions established are: pH between 4 and 5, if the metal precipitates at neutral pH, 37 °C and 100 rpm agitation [44, 45]. To read the metal concentration is done by atomic absorption spectrophotometry, taking 5 mL sample every 15 minutes and prepared as described by [23, 46] and the concentration is calculated from the calibration curve prepared with standard solution of each metal studied. The detection limits can be 0.02 mg/L, analyzing in duplicate.