Biosorption process with bacteria in batch system

Microbial growth and substrate utilization expressions can be incorporated into mass balances to yield equations that can be used to predict effluent microorganism and substrate concentrations, and thus process efficiency. Continuous flow systems are grouped into two broad categories, suspended-growth and attached-growth processes, depending on whether the process microorganisms are maintained in suspension, or are attached to an inert medium (e. g., rocks, sand, granular activated carbon, or plastic materials). Attached-growth processes are also called fixed-film processes or biofilm processes.

Biosorption has provided an alternative process to the traditional physico-chemical methods, utilizing inexpensive biomass to sequester toxic heavy metals. In the 80 last decades, many researchers have focus on the treatment of wastewater containing heavy metals by the use of living organisms and/or their biomass. Many types of organisms such as bacteria, fungi, yeast and algae or their biomasses, have been used for metal uptake [42].

Biosorption tests batch system are carried out with each strain selected in 500 mL erlenmeyer flask, add 90 mL of a solution containing the metal to study, at an initial concentration established and adding 10 mL culture of 24 h of each strain, with a biomass concentration of 1 g/L. Target used 100 mL of metal solution without bacteria. Samples were
analyzed in duplicate for each strain. Is used nephelometer of McFarland to estimate the number of cells/mL [40, 42]. The conditions established are: pH between 4 and 5, if the metal precipitates at neutral pH, 37 °C and 100 rpm agitation [44, 45]. To read the metal concentration is done by atomic absorption spectrophotometry, taking 5 mL sample every 15 minutes and prepared as described by [23, 46] and the concentration is calculated from the calibration curve prepared with standard solution of each metal studied. The detection limits can be 0.02 mg/L, analyzing in duplicate.