Как выбрать гостиницу для кошек
14 декабря, 2021
Several species of cyanobacteria, including Chlamydomonnas reinhardtii, Oscillatoria limosa, Microcystis PCC7806, Cyanothece PCC7822, Microcystis aeruginosa PCC7806 and Spirulina pla — tensis produce ethanol via an intracellular photosynthetic process. After selecting strains for ethanol, salt and pH tolerance, ethanol production can be enhanced through genetic modification [33]. These strains are long-lived and can be grown in closed photobioreactors to produce an ethanol containing algae slurry. This process for ethanol production from algae is currently being demonstrated by Algenol Biofuels [34—36]. The cyanobacteria are grown in flexible-film, polyethylene-based closed photobioreactors containing seawater or brackish water as medium. Industrial (or other waste) CO2 is sparged into the bags to enhance growth of the microorganisms. Nutrients (primarily nitrogen and phosphorus) are supplied to sustain growth. At maturity, the microorganisms produce ethanol. The ethanol in the liquid phase will maintain an equilibrium with the ethanol-water in the vapor phase. The ethanol-water in vapor phase condenses along the walls of headspace which is collected by gravity for ethanol recovery. Algenol aims to produce 56,000 L of ethanol per hectare per year using 430 polyethylene bags established over a one hectare footprint each containing 4500 L of culture medium with a cyanobacteria concentration of 0.5 g/L. Unlike other algae derived biofuel processes, the algae are retained in the bags while the ethanol water condensate is removed for ethanol recovery. It is expected that the photobioreactors will be emptied once a year to replace the seawater, growth media and cyanobacteria.
The ethanol concentration in the algal cultures is expected to range between 0.5 and 5 % (w/w) depending on the ethanol tolerance levels of the strain and that of the condensate between 0.5 and 2% [36]. Since the maximum ethanol concentration is expected to be only 2 %, conventional distillation for ethanol recovery will not be energy efficient. A vapor compression steam stripping (VCSS) process is being developed to concentrate the ethanol to 5-30 % (w/w) range. VCSS is a highly heat integrated process that offers the potential for energy efficient separation even at low ethanol concentrations. This is then followed by a vapor compression distillation process to concentrate ethanol to an azeotropic 94% concentration. Life cycle energy requirements and greenhouse gas emissions for the process are dependent on the ethanol content of the condensate from the photobioreactors. Detailed analysis using process simulation software have shown that net life cycle energy consumption (excluding photosynthesis) is 0.55 down to 0.2 MJ/MJethanol and net life cycle greenhouse gas emissions is 29.8 down to 12.3 g CO2e/MJelhanol for ethanol concentrations ranging from 0.5 to 5% by weight [36]. Compared to gasoline these values represent a 67% and 87% reduction in the carbon footprint on an energy equivalent basis [36].
One of the technological challenges for this approach appears to be developing genetically engineered cyanobacterial strains that can tolerate high concentrations of ethanol. The ethanol concentration in the growth medium will affect the vapor phase ethanol content which in turn will affect the content of the condensate recovered from the photobioreactor. There is a dramatic increase in energy consumption in a conventional distillation process as ethanol content decreases below 7.5% (by volume). Energy required almost doubles when ethanol content decreases from 12% down to 5% (by volume).
Another challenge would be the economical disposal of spent algal cultures. Sterilization and inactivation of large volumes of biomass can involve extremely energy intensive unit operations like heating, or expensive processes like ultra violet treatment or chlorination.
Butanol is a four carbon straight chained alcohol, colorless and flammable. Butanol can be mixed with ethanol, ether and other organic solvent. Butanol can be used as a solvent, in cosmetics, hydraulic fluids, detergent formulations, drugs, antibiotics, hormones and vitamins, as a chemical intermediate in the production of butyl acrylate and methacrylate, and additionally as an extract agent in the manufacture of pharmaceuticals. Butanol has a 4-carbon structure and the carbon atoms can form either a straight-chain or a branched structure, resulting in different properties. There exist different isomers, based on the location of the — OH and carbon chain structure. The different structures, properties and main applications are shown as Table 1.
Although the properties of butanol isomers are different in octane number, boiling point, viscosity, etc., the main applications are similar in some aspects, such as being used as solvents, industrial cleaners, or gasoline additives. All these butanol isomers can be produced from fossil fuels by different methods, only n-butanol, a straight-chain molecule structure can be produced from biomass.
Plasticizers — improve a for butanone, etc. paint
plastic material processes Industrial cleaners -paint Gasoline
Chemical intermediate — for removers
butyl esters or butyl ethers, Perfumes or in artificial
etc. flavors
Cosmetics- including eye
makeup, lipsticks, etc.
Gasoline additive
Table 1. Structures, properties and main applications of n-butanol, 2-Butanol, iso-Butanol and tert-Butanol
Preparation of a fuel blending mixture characterized by viscosity breaking and clouding point decreasing abilities was carried out in the reaction of acetone (by-product of biobutanol production) and glycerol (by-product of biodiesel or butyldiesel production) in presence of acidic catalysts such as sulphuric acid, p-toluenesulfonic acid or strongly acidic cation exchangers. A mixture of 2,2-dialkoxy-propanes, 2,2-dimethyl-4-hydroxymethyl-1,3-dioxo — lane and 2,2-dimethyl-5-hydroxy-1,3-dioxane was formed [176]. Similar reaction of an oxidized ABE mixture consist of butyraldehyde, acetaldehyde and acetone was carried out with formation of a mixture contained 2,2-dialkoxy-propanes, 1,1-dialkoxyethanes, 1,1- dialkoxybutanes, and 2,2-dimethyl-, 2-methyl or 2-propyl derivatives of the appropriate 4- hydroxymethyl-1,3-dioxolane and 5-hydroxy-dioxane[176]. In this way, the by-products of the biodiesel or butyl-biodiesel production (glycerol) and the acetone from the biobutanol producing (or the oxidized ABE solvent mixtures) can completely be used as fuel components [176]. Fuel characteristics of a blended (15 %) biofuel prepared from oxidized ABE mixture and glycerol contains methanol can be seen in Table 4.
Parameter |
Values measured by EU standardized methods [176, 243] |
||
Commercial biodiesel |
Experimental biodiesel |
Commercial diesel No.2 |
|
Fatty acid methyl ester content, wt.% |
100.00 |
85.00 |
4.00 |
Density at 15 °C, kg dm-3 |
0.8879 |
0.8938 |
0.8495 |
Kinematic viscosity, 40 °C, mm2 s-1 |
2.98 |
4.23 |
5.65 |
Flash point, °C |
179 |
56.5 |
76 |
Sulphur content, mg kg-1 |
12 |
5.4 |
36 |
Conradson number, wt. % |
0.08 |
0.02 |
0.16 |
Sulphate ash, wt. % |
0.012 |
0.001 |
0.002 |
sClouding point, °C |
-3 |
-15 |
-12 |
Table 4. Fuel parameters of a biodiesel oil contains 15 % acetal mixture prepared from mixture of glycerol, etanol, butanol and acetaldehyde, butyraldehyde and acetone [176]. |
Butanol and butyric acid prepared by optimized batch or fed-batch fermentation of wheat flour hydrolysate with selected strains of Clostridium strains, then butanol was recovered from the fermentation broth by distillation and butyric acid by solvent extraction. Esterification could be performed with a lipase in the solvent of extraction [234]. The butylbutyrate formed has a great value as novel biofuel [235]. D’amore at al. developed a catalytic process for making dibutyl ether as transportation fuel and diesel blending component from aq. butanol solutions [236]. Butoxylation of the unsaturated fraction of biodiesel offers the potential benefit of reduced cloud point without compromising ignition quality or oxidation stability. Butyl biodiesel derived from canola oil was epoxidized via the in situ peroxyacetic acid method then the epoxy butyl biodiesel was butoxylated with n-butanol with sulfuric acid catalyst without use of solvents. Optimal conditions for the butoxylation of epoxy butyl biodiesel were 80 °C, 2% sulfuric acid, and a 40:1 molar ratio of n-butanol over a period of 1 h. Conversion of epoxy butyl biodiesel was 100%, and selectivity for butoxy biodiesel was 87.0%. Butoxy biodiesel is able to prevent an earlier onset of crystallization due to the decrease in unsaturated content, but only at lower concentrations [237]. One-step conversion reactions of the title products (6:3:1 volume BuOH-acetone-EtOH) with and without water to aromatic hydrocarbons over molecular shape-selective zeolite were carried out by Anunziata et al. The presence of water in the feed resulted in increased catalyst life. Deactivation reactions toward aromatic hydrocarbon synthesis with product-H2O mixtures (50:50, 85:15, 99:1, vol.) shown the influence of secondary alkylation reactions leading to substituted aromatic hydrocarbons whose yields were related to the deactivation time of the catalyst [238]. Costa et al. studied the conversion of n-BuOH/Me2CO mixtures to C1-10 hydrocarbons on ZSM-5-type zeolites with different Si-Al ratios. Best results were obtained with a HZSM-5 zeolite (Si/Al=36:1), using a 30 wt% Na montmorillonite binder. The formation of gaseous olefins and non-aromatic liquid hydrocarbons decreased with increasing reaction temperature or space velocity, whereas the amount of aromatic hydrocarbons and gaseous paraffins increased. The total yield of liquid hydrocarbons increased with pressure, although the aromatic content showed a smooth maximum at 1 atm. The yield of aromatic hydrocarbons decreased with increasing water content in the feed. A hydrocarbon distribution similar to that obtained from the anhydrous mixture can be obtained with water-containing feedstock, but lower space velocities were necessary [239]. Orio et al. described the conversion of low molecular-weight oxygenated compounds as ABE solvent mixture into gasoline components over HZSM-5 zeolites. Reagents were used in nonanhydrous form. Formation of C2-4 hydrocarbons decrease and aromatic hydrocarbons increase with increasing temperature, formation of C5-8 hydrocarbons increases to a maximum at ~300 °C and then decreases. The yields of aromatics from all reactants were ~60 to ~90%; the yields of C2-4 and C5-8 hydrocarbons were <30% and <10%, respectively. Highest production of aromatic hydrocarbons was attained with the fermentation products of starch (6:3:1 BuOH — acetone-EtOH) [240]. Butanol produced by the fermentation of starch can be presented as a key compd. to produce diesel and jet fuel. Butanol could be converted into Bu esters or into 1- butene which was catalytically oligomerized in a H2 atmosphere into a hydrocarbon fuel [241].
Biobutanol proved to be a superior fuel substitute and blending component in gasolines or diesel fuels. It can be used as raw material in the preparation of so-called butyl-diesel (long — chain fatty acid butyl esters), in the butoxylation of unsaturated fatty acid esters and in the preparation of dibutoxy-acetals. Butanol can easily be transformed via butyraldehide into 2- butoxy-4-hydroxymethyl-1,3-dioxolane or 2-butoxy-5-hydroxy-1,3-dioxane fuel additives with using waste glycerol of biodiesel or butyldiesel production. The new fermentation techniques use renewable lignocellulosic raw materials, and integration with various recovering technologies, membrane techniques, together with new fermentor types and genetically engineered microorganisms make a solid base of a new generation of economic biobutanol production processes.
5-Hydroxymethyl-furfural (HMF) can be obtained in a biphasic reactor from the acid-catalyzed dehydration of hexoses[33]. HMF by itself cannot be used as motor fuel due to its high boiling point (283°C). However, it can be transformed to 2,5-dimethylfuran (DMF) through a two consecutive hydrogenolysis reactions (see Figure 7). DMF not only decreases the boiling point to a value suitable for liquid fuels, but also attains the lowest water solubility and the highest octane number (RON) of the mono-oxygenated C6 compounds, while preserving a high energy density 30 kJ cm-3, which is 40% higher that the energy density of bio-ethanol and comparable to the one of gasoline (35 KJ cm-3) [34]. Roman-Leshkov et al. [34] used CuRu/C catalysts (prepared by incipient wetness impregnation) in a flow reactor using 5 wt % HMF in a 1-butanol solution at 220 °C and 6.8 bar H2 pressure. Yields to DMF of 71% were measured. An important aspect in their process is that the catalyst should be chloride-resistant, because, NaCl was used in the dehydration step of hexoses to HMF to increase their solubility in water. Very recently, Luijkx et al. [35] reported the production of 2,5-DMF by the hydrogenolysis of 5-HMF over a Pd/C catalyst in 1-propanol. Due to simultaneous alcoholysis, significant amount of ethers products were formed.
The increase of energy demand in recent decades driven in particular by developed countries and countries with economic growth as Colombia, is leading to rapid depletion of nonrenewable energy resources, increasing pollution and global warming. The alternatives energetics sources emerge as a great option to reduce the adverse effects of this development. The biomass is considered as the alternative energetic source the most potential, according to reports from the World Energy Council [11] it is estimated that energy from biomass will account for 25,4% of global consumption by 2030 and 80% by 2080. Biomass is very varied due to its production and origin, a particular type are the wastes of natural processes, industrial or agroindustrial.
It is estimated that Colombia has an energy potential from residual biomass of 449.485 TJ / year, also has a land area of 114,174,800 hectares, of which 44,77% are engaged to agricultural activities, this places to sector as the main source of wastes (with an energy potential of 331.645 TJ / year, mainly from annual and permanent crops). At the second place are the wastes from livestock activities (with an energy potential of 117.747 TJ / year), then the urban organic wastes (wastes from food and homes with an energy potential of 91 TJ / year) and finally the wastes from agroindustrial activities [12].
Among the methods to profit energetically the residual biomass, the anaerobic fermentation is a way of great interest, with this bioprocess is possible to generate a gas with high energy characteristics such as hydrogen and sludge that could be employed as fertilizer on crop. The generation of biohydrogen by anaerobic fermentation of wastes has generated great interest in the last decades. Hydrogen is a promising option as energy source [13, 14], it is a clean renewable resource because its combustion produces only water as emissions, in addition has the highest energy content per unit mass, with a value of 122 kJ / g [13]. The biological production of hydrogen can be seen as a promising option [15], two types of bacteria are involved in the process: acidogenic bacteria which initially to reduce the substrate in H2 (biohydrogen), acetic acid and CO2 and the methanogenic bacteria that converted these elements in methane gas. If the purpose is to produce biohydrogen, favorable conditions for the growth of the first type of bacteria (acidogenic) should be provided, inhibiting or eliminating the population of methanogenic bacteria [16]. Currently there are two methods to inhibit this type of bacteria: thermal shock and acidification [17, 18].
The residual biomass in Colombia has a high potential as alternative energetic source, only in wastes of sugar cane, rice husk, coco fiber, coffee pulp, oil palm, bean seed and barley, the potential is 12.000 MW/year approximately. The wastes are produced in different regions of the country and during all year. The country has a potential for generation of biomass of 331’638.720 ton/year, if all agricultural and urban wastes were treated by fermentation anaerobic, could be generated 28’825.609 m3 of biohydrogen, this might give a energetic potential of 144 GW, upper value to country potential in wind energy (21 GW), tidal energetic potential (30 GW with two coasts) and geothermic energetic potential (1 GW).
In Colombia this quantity of biohydrogen could replace all diesel requested by the diesel electrical plants installed in the country. This has a great important especially in regions without connection to national electrical grid. In the country approximately the 66% of the territory are not connection to national electrical grid, this is 1,4 millions of people, namely the 4% of the population. The country has an installed electric capacity at the region without connection to national electrical grid of 102 MW of which 97 MW are produced by diesel plants, this quantity could be generated, using only the 40% of the urban organic wastes generated at the country. Colombia produces 250.000 tons/year of banana wastes with a potential to generated 100.000 m3 of biohydrogen by anaerobic fermentation, this represent 500 MW of energy per year, quantity enough to supply the electric energy demand of 200.000 people during a year.
Pervaporation is a membrane-based process that allows selective removal of volatile compounds from fermentation broth. The membrane is placed in contact with the fermentation broth and the volatile liquids or solvents diffuse through the membrane as a vapor which is recovered by condensation. A vacuum applied to the side of permeate. Polydimethylsilox — ane membranes and silicon rubber sheets are generally used for the pervaporation process. Selection of a suitable polymer forming the active part of the membrane is a key factor in this case. In the batch fermentation, Evans and Wang increased the solvent concentration and productivity from 24.2g/l and 0.34g/(lh) to 32.8g/l and 0.5g/(lh) with pervaporation (Evans and Wang, 1988). Groot et al. applied pervaporation on the fed-batch fermentation and the solvent productivity and concentration reached 0.98g/lh and 165.1g/l (Groot et al., 1984). The Reverse osmosis is another recovery technique that based on membranes. Before the reverse osmosis is carried out, the suspended vegetative organisms must be removed using the hollow-fiber ultra-filter. After the pretreatment, reverse osmosis starts to dewater the fermentation liquor by rejecting solvents but allowing water to pass through the membrane. And then, the products are concentrated (Zheng et al., 2009).
In addition to improving hydrocarbon-based fuel synthesis, metabolic engineering strategies can also be applied to address other factors affecting large-scale production. Two main issues will be addressed in this section: product toxicity and industrial strain robustness.
Product toxicity was shown to be a limiting factor in the production of first generation biofuels like ethanol. Since the interest in hydrocarbon-based fuels has developed only during the past decade, the toxicities of these fuels have not been fully explored, particularly with respect to autotrophic hosts. Fortunately, interest in hydrocarbon inhibition of microbial growth dates back almost a century [118], and we can capitalize on this wealth of information to engineer improved product tolerance in microbial hosts. Most fatty acid derived fuel molecules have shown some antimicrobial activity. FFAs, with a diverse range of carbon chain lengths and degrees of unsaturation, impart inhibitory effects on organisms including algae, Gramnegative and Gram-positive bacteria, fungi, protozoans, and various cell types of multicellular organisms [119]. Medium chain fatty alcohols such as pentanol, hexanol, heptanol, and octanol inhibited the biological activity of several algal and cyanobacterial strains, including fuelrelevant hosts C. reinhardtii and Dunaliella salina [120]. Interestingly, long-chain fatty alcohols (>C14) did not exhibit inhibitory effects on yeasts, suggesting that targeting longer chain fatty alcohols may eliminate the toxicity concern [121]. Similarly, medium-length alkanes (hexane, heptane, and isooctane) were toxic to microalgae while long-chain alkanes (C12-C16) elicited no effect [120, 121]. Microbial TAG and FAEE toxicities have not been reported. However, the phospholipid membrane surrounding algal TAGs may mask potential inhibitory effects, and FAEE production has been linked to the toxic effects of alcohol consumption in humans [122]. Isoprenoid-based fuel molecules have also illustrated inhibitory effects. Cyclic terpenes, such as pinene and limonene (Figure 2), inhibited the growth of bacteria and S. cerevisiae [123, 124], while branched isoprenoids, such as farnesyl hexanoate and geranyl acetate, were shown to be toxic to E. coli [125]. In fact, E. coli’s tolerance to isoprenoid-derived biodiesels and bioaviation fuels only ranged from 0.025 — 1% (v/v) [125]. Based on these previous studies, product toxicity is a major limiting factor and should be integrated into the metabolic engineering strategy.
A variety of strategies can be adopted to address product toxicity. The easiest way to avoid complications from product toxicity is to select non-toxic fuel targets. Toxicity studies can be conducted for each potential host organism, and generally, fatty alcohols longer than C14, alkanes longer than C9, and alkenes longer than C12 have shown minimal microbial inhibition [120, 121]. Alternatively, metabolic engineering techniques can be applied to allow for a more diverse range of hydrocarbon fuel targets. Many cellular modifications have been shown to improve microbial solvent tolerance: changes in membrane lipid composition; altered enzymatic activities of membrane repair and energy transduction enzymes; solvent expulsion via efflux pump activity; and cellular stress responses including heat shock, phage shock, and general stress responses [118, 125, 126]. These natural mechanisms offer a range of engineering targets: expression of a cis-trans isomerase to alter lipid composition; overexpression of enzymes involved in membrane repair and energy transduction; expression of efflux pumps such as tolC, mar, rob, soxS, and acrAB; and overexpression of stress-induced enzymes such as phage shock protein, heat shock proteins, catalases, and superoxide dismutases [125, 126]. While few metabolic engineering efforts have focused on enhancing product tolerance, a recent study explored improving hydrocarbon-based fuel tolerance in E. coli by testing a library of 43 efflux pumps [127]. This work identified efflux pumps that improved tolerance to five potential isoprenoid derived fuels. This preliminary success at engineering solvent tolerance should inspire additional efforts to improve the microbial production of both fatty acid and isoprenoid derived fuels.
In addition to product tolerance, other host traits are desirable for industrial biofuel production, particularly for autotrophic microorganisms. As discussed in the previous section, light availability is often a growth limiting factor in microalgal cultures. Microalgae construct light harvesting complexes (LHC) to capture the available light for use in photosynthesis, and natural species actually absorb more light than is needed for photosynthesis under light intensities > 400 |omol photons m-2 s-1 [128]. As the sun can generate light intensities as high as 2,000 |omol photons m-2 s-1 during peak hours, it is estimated that as much as 80% of light absorbed by microalgae is ‘wasted’ as re-emitted fluorescence and heat [129]. In addition to this loss of energy, the excess energy can also cause cellular damage, known as photoinhibition [128]. In nature, this over-absorption of light will give the microalga a competitive advantage, but from a biofuel production perspective, this excess light harvesting will lead to lower culture cell densities and therefore lower biofuel productivities. Thus, there have been many attempts to engineer microalgae to absorb only the amount of light needed for photosynthesis. These efforts target genes of the light harvesting antenna complexes. Most LHC mutants were generated using random mutagenesis techniques including chemical, UV, and transposon mutagenesis [128, 130—134]. Many of these studies focus on the model alga C. reinhardtii, but other microalgal species, such as the diatom Cyclotella sp. and the cyanobacterium Synechocystis sp., have been mutated to reduce the size of their photosynthetic antennae [130, 133]. Several recent works have applied RNAi technology in C. reinhardtii to reduce the expression of targeted LHC genes in a more controlled manner [129]. In general, the antenna mutants have shown improved photosynthetic quantum yields, reduced photoinhibition, enhanced productivity under high light conditions, and increased light penetration within the culture [128, 129, 131—134]. While these results are promising, several questions remain to be addressed: Are the photosynthetic antenna mutants genetically stable, or will they revert back to their more competitive and less efficient forms over time? And are these mutants less fit and therefore more susceptible to predators and competitors in open pond systems?
Open pond systems are subject to a variety of changing environmental conditions, and as such, the optimal autotrophic host will have the necessary cellular mechanisms to adapt to these changing conditions. Desirable host traits may include temperature tolerance, salt tolerance, and resistance to predators. Open ponds are exposed to both daily and seasonal temperature fluctuations which often exceed the normal temperature ranges for optimal cell growth and may even cause cell death. Engineering efforts have successfully altered the temperature tolerance of cyanobacteria though either gene knockout or heterologous overexpression of desaturases which influence the viscosity of both the cell and photosynthetic membranes [135]. Alternatively, microalgae with different temperature optima can be rotated seasonally in the open ponds, similar to seasonal crop rotations in agricultural practices. As mentioned previously, open pond systems are complicated by evaporative water loss, particularly for the sunny, arid regions that are ideal for microalgal biofuel production. Evaporation can lead to fluctuations in the salt concentration within the pond culture, and many have proposed to utilize marine or brackish water sources to reduce the cost associated with freshwater systems. Moreover, high salt and saturated salt systems will have lower evaporative water loss compared to freshwater cultures. Naturally salt-tolerant microalgae, such as those isolated from marine or even hypersaline environments, may be selected as host for biofuel production, or efficient fuel-producing hosts can be engineered for increased salt tolerance. For example, the cyanobacterium Synechococcus elongatus PCC 7942, modified with expression of a A12 acyl-lipid desaturase (desA), showed improved resistance to salt and osmotic stress compared to the wildtype [136]. Lastly, pond crash due to microalgal predators like rotifers and chytrids is a major problem for open pond biofuel production systems. While there have not been any reported attempts at engineering predator-resistant microalgae, there have been reports of natural defense mechanisms such as palmelloid formation by C. reinhardtii, which produces non-motile cell aggregates that are simply too large to be consumed by grazing rotifers [137]. Once the genetic mechanism responsible for palmelloid formation is deciphered, it may be possible to transfer this resistance mechanism to other microalgae using genetic engineering techniques. When devising a metabolic engineering strategy for biofuel production, it is essential to consider the entire genomic landscape and the natural diversity of genetically-driven traits to design the optimal host for the specific industrial constraints.
One interesting approach to reduce the consumption of molecular hydrogen during the HDO of bio-oils is to use hydrogen donating solvents. For instance, Elliott has reported that when the bio-oil upgrading is carried out in the presence of a hydrogen donor solvent (tetra — lin, 1-1 ratio with bio-oil feedstock) the oxygen removal increases from 70 to 85% and less deactivation of the catalyst was observed. Some of the components already present in the bio-oil, such as alcohols or acids, may also provide hydrogen for the deoxygenation reactions [10]. Traditional catalysts active in hydrogen transfer reactions, such as Pd, Ni or Cu should be used in this process [73].
Another attractive option is to use hydrogen donating solvents during the hydrotreating of biomass. The idea is to obtain a bio-oil with a lower oxygen content, and therefore, easier to upgrade. This concept has been mainly applied in the pyrolysis of lignin. If a hydrogen donor molecule is added during the pyrolysis, both depolymerization and hydrogenation occur simultaneously. Remarkable results have been obtained using hydrogen-donating solvents, such as tetralin or 9,10-dihydroanthracene [74]. However, a major drawback is the need for large quantities of these solvents. At this point, formic acid appears to be a promising donor molecule, as it can be obtained together with levulinic acid from the hydrolysis of biomass. On heating, formic acid decomposes completely into CO2 and two active hydrogen atoms, which are efficient scavengers of any radical species formed in the lignin. By successive homolytic cleavage of the covalent linkages of the lignin, including aromatic rings, most of the oxygen is removed as water and hydrocarbons are formed (Figure 13). When pyrolysis is carried out with formic acid, lignin can be converted into hydrogen-rich, oxygen depleted products with no added catalyst [75].
Figure 13. Schematic picture of the products formed upon the pyrolysis of lignin in thepresence of formic acid [75]. |
Additional information is available at the end of the chapter http://dx. doi. org/10.5772/53827
1.1. Current sources of biofuels
The United States, as well as numerous other countries throughout the world, is seeing a rapid rise in the amount of power and fuel required to maintain the current and future lifestyles of its citizens. With the rapid increase in global consumerism and travel seen over the recent decades due to improvements in technology and the increase in international interactions, the demand for fuel is rapidly growing, as can be seen in Figure 1. Due to the worldwide demand for fuel, which currently is primarily fossil-derived, supplies are being strained and costs are rapidly rising. In order to satiate this rapid increase in demand and stem the shrinking supply, new alternative sources of fuel must be brought to the market that can be used to replace standard petroleum based fuels.
Currently, there are several sources of alternative fuels that can be used to replace or supplement traditional petroleum based fuels. Some of these sources include alternative fossil-derived sources such as coal, natural gas, and hydrogen derived from hydrocracking, while other sources come from more renewable sources such as biomass. Biomass has several advantages when it comes to fuels in that there are numerous sources such as terrestrially grown starch based or cellulosic material, waste derived material, or aquatic and marine based organisms, each of which has unique components and characteristics useful for fuel production.
Due to the structural variability of the various types of biomass available, a wide range of technologies can be used to convert the organic molecules into a useable form of fuel. As food substrates (such as carbon dioxide in autotrophic organisms or sugars in heterotrophic organisms) are metabolized, a range of cellular components are assembled to perform numerous duties to keep organisms alive and reproducing. Starches and celluloses are assembled from carbohydrates to provide rigid structural support in many woody biomasses as
Figure 1. Annual Consumption of Total Energy and Petroleum in the United States and the World [1]
Table 1. Variations in the chemical composition of selected algal species [2, 3] |
Sources of biofuel currently being produced range in production rate from the laboratory scale through full scale implementation. Technologies to break down starches and cellulosic materials into sugars for subsequent conversion to bioalcohols has been extensively developed and scaled to produce billions of gallons per year to add into petroleum derived gasoline. Other structural components such as lipids have a high energy content to them and have characteristics that closely mimic petroleum diesel and kerosene, and thus, only require simple chemical reaction (i. e., transesterification) for use as a biofuel, and have been developed up to a quasi-large scale of volumetric output that can be seen in some regional market places, as well as in home production for personal use.
In continuous stirred tank reactor (CSTR), gas substrates are continuously fed into the reactor and mechanically sheared by baffled impellers into smaller bubbles, which has greater interfacial surface area for mass transfer [16]. In addition, finer bubbles have a slower rising velocity and a longer retention time in the aqueous medium, resulting in higher gas-to-liq — uid mass transfer [24]. Fermentation reactions using C. Ijungdahlii have been successfully maintained in a 2 litre CSTR under autotrophic conditions for more than a month, while achieving peak ethanol level of 6.5 g/l and CO conversion rate of 93% [186]. The production of 49 g/l of ethanol from gas substrates using C. ljungdahlii was demonstrated using CSTR [113]. In another example, a 100 litre stirred tank reactor was demonstrated to produce up to 24.57 g/l ethanol, 9.25 g/l isopropanol and 0.47 g/l n-butanol during a 59-day semi-batch gas fermentation using "C. ragsdalei" strain P11 as biocatalysts [112]. An improved version of CSTR incorporates microbubble sparger to generate finer bubbles to achieve higher mass transfer coefficient [187]. Although CSTR offers complete mixing and uniform distribution of gas substrates to the microbes, the high power per unit volume required to drive the stirrer are thought to make this approach economically unviable for commercial scale gas fermentation systems [187].