Other types of butanol-based biofuels

Preparation of a fuel blending mixture characterized by viscosity breaking and clouding point decreasing abilities was carried out in the reaction of acetone (by-product of biobutanol production) and glycerol (by-product of biodiesel or butyldiesel production) in presence of acidic catalysts such as sulphuric acid, p-toluenesulfonic acid or strongly acidic cation exchangers. A mixture of 2,2-dialkoxy-propanes, 2,2-dimethyl-4-hydroxymethyl-1,3-dioxo — lane and 2,2-dimethyl-5-hydroxy-1,3-dioxane was formed [176]. Similar reaction of an oxidized ABE mixture consist of butyraldehyde, acetaldehyde and acetone was carried out with formation of a mixture contained 2,2-dialkoxy-propanes, 1,1-dialkoxyethanes, 1,1- dialkoxybutanes, and 2,2-dimethyl-, 2-methyl or 2-propyl derivatives of the appropriate 4- hydroxymethyl-1,3-dioxolane and 5-hydroxy-dioxane[176]. In this way, the by-products of the biodiesel or butyl-biodiesel production (glycerol) and the acetone from the biobutanol producing (or the oxidized ABE solvent mixtures) can completely be used as fuel components [176]. Fuel characteristics of a blended (15 %) biofuel prepared from oxidized ABE mixture and glycerol contains methanol can be seen in Table 4.

Parameter

Values measured by EU standardized methods [176, 243]

Commercial biodiesel

Experimental

biodiesel

Commercial diesel No.2

Fatty acid methyl ester content, wt.%

100.00

85.00

4.00

Density at 15 °C, kg dm-3

0.8879

0.8938

0.8495

Kinematic viscosity, 40 °C, mm2 s-1

2.98

4.23

5.65

Flash point, °C

179

56.5

76

Sulphur content, mg kg-1

12

5.4

36

Conradson number, wt. %

0.08

0.02

0.16

Sulphate ash, wt. %

0.012

0.001

0.002

sClouding point, °C

-3

-15

-12

Table 4. Fuel parameters of a biodiesel oil contains 15 % acetal mixture prepared from mixture of glycerol, etanol, butanol and acetaldehyde, butyraldehyde and acetone [176].

Butanol and butyric acid prepared by optimized batch or fed-batch fermentation of wheat flour hydrolysate with selected strains of Clostridium strains, then butanol was recovered from the fermentation broth by distillation and butyric acid by solvent extraction. Esterification could be performed with a lipase in the solvent of extraction [234]. The butylbutyrate formed has a great value as novel biofuel [235]. D’amore at al. developed a catalytic process for making dibutyl ether as transportation fuel and diesel blending component from aq. butanol solutions [236]. Butoxylation of the unsaturated fraction of biodiesel offers the potential benefit of reduced cloud point without compromising ignition quality or oxidation stability. Butyl biodiesel derived from canola oil was epoxidized via the in situ peroxyacetic acid method then the epoxy butyl biodiesel was butoxylated with n-butanol with sulfuric acid catalyst without use of solvents. Optimal conditions for the butoxylation of epoxy butyl biodiesel were 80 °C, 2% sulfuric acid, and a 40:1 molar ratio of n-butanol over a period of 1 h. Conversion of epoxy butyl biodiesel was 100%, and selectivity for butoxy biodiesel was 87.0%. Butoxy biodiesel is able to prevent an earlier onset of crystallization due to the decrease in unsaturated content, but only at lower concentrations [237]. One-step conversion reactions of the title products (6:3:1 volume BuOH-acetone-EtOH) with and without water to aromatic hydrocarbons over molecular shape-selective zeolite were carried out by Anunziata et al. The presence of water in the feed resulted in increased catalyst life. Deactivation reactions toward aromatic hydro­carbon synthesis with product-H2O mixtures (50:50, 85:15, 99:1, vol.) shown the influence of secondary alkylation reactions leading to substituted aromatic hydrocarbons whose yields were related to the deactivation time of the catalyst [238]. Costa et al. studied the conversion of n-BuOH/Me2CO mixtures to C1-10 hydrocarbons on ZSM-5-type zeolites with different Si-Al ratios. Best results were obtained with a HZSM-5 zeolite (Si/Al=36:1), using a 30 wt% Na montmorillonite binder. The formation of gaseous olefins and non-aromatic liquid hydrocar­bons decreased with increasing reaction temperature or space velocity, whereas the amount of aromatic hydrocarbons and gaseous paraffins increased. The total yield of liquid hydrocar­bons increased with pressure, although the aromatic content showed a smooth maximum at 1 atm. The yield of aromatic hydrocarbons decreased with increasing water content in the feed. A hydrocarbon distribution similar to that obtained from the anhydrous mixture can be obtained with water-containing feedstock, but lower space velocities were necessary [239]. Orio et al. described the conversion of low molecular-weight oxygenated compounds as ABE solvent mixture into gasoline components over HZSM-5 zeolites. Reagents were used in non­anhydrous form. Formation of C2-4 hydrocarbons decrease and aromatic hydrocarbons increase with increasing temperature, formation of C5-8 hydrocarbons increases to a maximum at ~300 °C and then decreases. The yields of aromatics from all reactants were ~60 to ~90%; the yields of C2-4 and C5-8 hydrocarbons were <30% and <10%, respectively. Highest production of aromatic hydrocarbons was attained with the fermentation products of starch (6:3:1 BuOH — acetone-EtOH) [240]. Butanol produced by the fermentation of starch can be presented as a key compd. to produce diesel and jet fuel. Butanol could be converted into Bu esters or into 1- butene which was catalytically oligomerized in a H2 atmosphere into a hydrocarbon fuel [241].

7. Conclusion

Biobutanol proved to be a superior fuel substitute and blending component in gasolines or diesel fuels. It can be used as raw material in the preparation of so-called butyl-diesel (long — chain fatty acid butyl esters), in the butoxylation of unsaturated fatty acid esters and in the preparation of dibutoxy-acetals. Butanol can easily be transformed via butyraldehide into 2- butoxy-4-hydroxymethyl-1,3-dioxolane or 2-butoxy-5-hydroxy-1,3-dioxane fuel additives with using waste glycerol of biodiesel or butyldiesel production. The new fermentation techniques use renewable lignocellulosic raw materials, and integration with various recov­ering technologies, membrane techniques, together with new fermentor types and genetically engineered microorganisms make a solid base of a new generation of economic biobutanol production processes.