Category Archives: Альтернативные источники энергии и энергосбережение

Использование перепада температур океан-атмосфера

Особенность работы таких станций — так называемый «треуголь­ный» цикл: нагрев и испарение рабочего тела в результате политроп — ного процесса, адиабатное расширение через турбину, изотермическое сжатие при подаче в испаритель с одновременным отводом избыточ­ного тепла в холодильнике.

КПД такого цикла ниже термического КПД цикла Карно примерно в 2 раза. С точностью до 1 % он определяется выражением

ц = (ТОЇ—Т02)/2Т01,

где ТОЇ — температура теплой подледной воды (275 К); Т02 — темпе­ратура охлаждающего воздуха (до 233 К).

Удельная мощность, получаемая сім2 площади океана, при раз­ности температур воды и воздуха, равной 10 °С, составляет примерно 18 кВт/м2 при разности 20 °С — 60 кВт/м2, а при разности 30 °С — 125 кВт/м2.

В этих оценках величина скорости движения воды принята равной 0,02 м/с — характерная скорость для прибрежных районов Северного Ледовитого океана. Таким образом, при отсутствии ограничений по глу­бине океана в зоне размещения полярной ОТЭС и мощности в 1 МВт она будет возмущать тепловой режим на площади всего около 20 м2.

На рис. 5.12 приведена разработанная А. К. Ильиным и В. В. Тикменовым схема АОТЭС с обдуваемыми воздухом теплооб­менниками. В ней использован дополнительный контур с промежу-

-30вС

2,6вС; 0,29 МПа

Испаритель

основного

контура

2°С

Патрубок /’ЇЧ

сброса vJy

отработанной

Турбина с электрогенератором

-Q

0°С; 0,14 МПа

Насос для подачи

рабочего тела

Конденсатор 24,5°С Ґ6*4!

0°С

■в-

Насос для подачи

-22°С

■в-

Насос для Теплообменник контура

морской воды подачи охлаждения промежуточного

Дводы ДВодозаборник хладагента рабочего тела

Рис. 5.12. Схема арктической ОТЭС на перепаде вода-воздух

image383
Подпись: -30вС

точным теплоносителем, позволяющий существенно снизить потери энергии на собственные нужды станции.

Схема напоминает обычные тепловые станции с градирнями для охлаждения отработавшей воды. Но данные градирни действуют в условиях, когда температура наружного воздуха много ниже нуля, а охлаждаемая жидкость имеет температуру всего на несколько граду­сов выше.

Н

Примечание.

Поэтому в охлаждающем контуре такой станции необходимо использовать рассол с низкой температурой замерзания.

В качестве промежуточного теплоносителя применяется водный раствор хлористого кальция с концентрацией не менее 26 кг на 100 кг воды, который достаточно широко используется в холодильной тех­нике. Рабочим телом в основном контуре станции служит фреон-12, пары которого приводят в движение турбину с электрогенератором.

Промежуточный теплоноситель охлаждается путем разбрызгива­ния через форсунки оросительного охладителя. Причем важно обе­спечить определенное распыление, чтобы, с одной стороны, капли теплоносителя не выносились потоком холодного воздуха, а с дру­гой — успевали охладиться во время падения.

Для того чтобы капля диаметром 1 мм охладилась на 2 °С при дви­жении в воздухе со средней разностью температур 30 °С ей необхо­димо пролететь в свободном падении чуть более 3 м. Распыляя таким образом раствор хлористого кальция, можно добиться удельного съема энергии более 230 Вт/(м2К).

Такие значения коэффициентов теплоотдачи, конечно, уступают получаемым в настоящее время в конструкциях водо-водяных тепло­обменников традиционных ОТЭС (до 5 кВт/(м2К)), но превышают примерно в 5 раз характерные величины для простейших воздушных теплообменников станций без промежуточного теплоносителя.

Это позволяет снизить металлоемкость конденсаторов и примерно на 20 % увеличить выработку полезной энергии.

Сухая перегонка

Летучие соединения 14% Вода 12%

Уголь 6% С026%

Рис, 7,3, Пиролиз целлюлозы

Подпись:

Дёготь 61%

Подпись: Дёготь 61% image437Нагрев биомассы приводит к удалению влаги (ярко выраженный эндотермический процесс). При температуре выше 100 °С биомасса начинает разлагаться, а между 250 и 600 °С основными продуктами являются уголь и маслянистая кислая смесь дегтя и различных коли­честв метанола, уксусной кислоты, ацетона и следы других органи­ческих веществ. До развития нефтехимической промышленно­сти источником этих соединений была перегонка древесины.

На рис. 7.3 показан в качестве примера пиролиз целлюлозы. При температуре свыше 600 °С жидкие продукты пиролиза могут быть газифицированы, а свыше 800°С газифицируется также и уголь в результате эндотермической реак­ции углеродсодержащих молекул с водой с образованием синтез газа, смеси оксида углерода и водорода.

Какие химические реакции протекают в процессе тепловой обработки биомассы, точно определить трудно вследствие очень сложной хими­ческой природы биомассы. Правда, основными компонентами многих типов растительного материала являются целлюлоза и крахмал, и нам известны некоторые реакции сухой перегонки этих продуктов и их тер­модинамика. Сначала происходит карбонизация или обугливание.

Реакция является, в некоторой степени, экзотермической, т. е. такой же, как и получение пиролитического масла. В качестве средней молекулярной формулы пиролитического масла принимается фор­мула СбН80 (энтальпия=2,1 ГДж/т).

Образование синтез газа является в высшей степени эндотермиче­ской реакцией. При быстром нагревании целлюлозы, как при «мгно­венном» пиролизе, может образоваться некоторое количество олефи­нов в ходе другой эндотермической реакции.

Несмотря на некоторые утверждения относительно автотерма ль — ного характера (или близкого к автотермальному) процесса сухой перегонки биомассы, термическое обогащение биомассы обычно тре­бует затрат теплоты, составляющих до 10% теплоты сжигания сухой биомассы (примерно до 2 ГДж/т). Эта доля может быть значительно выше, например, при производстве угля, где происходит потеря лету­чих продуктов.

Установки открытого цикла

Турбокомпрессорная геотермальная установка закрытого цикла, рассмотренная выше, позволяющая значительно снизить потери теплоты за счет недоохлаждения воды в парогенераторе. Однако она обладает рядом крупных недостатков, которые препятствуют ее реа­лизации. Эти недостатки, связанные со сложностью конструкции и низкими значениями полезной удельной работы, устраняются в тур­бокомпрессорных геотермальных установках открытого цикла.

В качестве холодного источника в этих установках используется окружающая атмосфера, поэтому они не требуют конденсатора и гра­дирни с обслуживающими их агрегатами. Кроме того, турбокомпрес­сорные установки открытого цикла не нуждаются в специальных регу­лирующих устройствах, поддерживающих заданную массу несконден — сировавщегося газа в цикле. Это необходимо для установок закрытого цикла. А их тепловая схема позволяет в полной мере использовать газ, содержащийся в геотермальном теплоносителе, что существенно повышает эффективность использования геотермальной энергии.

Безусловно, реализация турбокомпрессорной установки открытого цикла связана с основной сложностью непосредственного использова­ния минерализованных геотермальных вод в цикле, заключающейся в трудности удаления солеотложений.

Однако последние научные исследования, выполненные в этом направлении, показывают, что процесс генерации пара в турбоком­прессорных установках за счет соответствующего повышения давления

за компрессором можно производить без нарушения углекислотного равно­весия геотермального теплоносителя.

Рис. 6.5. Принципиальная тепловая схема турбокомпрессорной геотермальной установки открытого цикла

Подпись:Это позволяет избежать выпадения солей кальция и магния, создающих основную минерализацию воды.

Принципиальная тепловая схема турбокомпрессорной геотермальной установки открытого цикла изобра­жена на рис. 6.5.

Воздух непосредственно из атмос­феры (холодного источника) заби­рается компрессором, сжимается и поступает в парогенератор, куда с другой стороны из эксплуатационной скважины подается геотермальная вода. При контакте газообразной и жидкой фаз, по описанной выше схеме, происходит насыщение воз­духа паром за счет охлаждения воды. Одновременно при этом паро­воздушная смесь разбавляется газом, выделяющимся из геотермаль­ной воды вследствие понижения ее давления.

Охлажденная в парогенераторе вода забирается насосом и направля­ется в скважину. Полученная паровоздушная смесь направляется в тур­бину, где, расширяясь, выполняет техническую работу и далее направля­ется в окружающую атмосферу, отдавая теплоту холодному источнику.

Процессы сжатия потока в компрессоре, генерации пара и расшире­ния в турбине идентичны с процессами турбокомпрессорной установки закрытого цикла и совершаются в агрегатах установки. А вот процесс передачи теплоты холодному источнику (окружающей среде) соверша­ется за пределами установки. Это исключает необходимость в конденса­торе и обслуживающих его элементах (градирне и насосах охлаждающей воды), не требуя холодного источника с жидким рабочим телом.

image418Примечание.

Существенные отличия рассматриваемых установок— в возмож­ностях использования потенциальной энергии газа, содержащегося в геотермальной воде и выделяющегося при расширении в пароге­нераторе или в специально предназначенном для этой цели дегаза­торе.

В установках закрытого цикла этот газ должен удаляться из цикла, как уже упоминалось выше, для поддержания в нем постоянного рас­хода несконденсировавшегося рабочего тела. Поэтому, расширяясь в турбине, он совершает полезную работу. Но затем при отсосе из кон­денсатора и сжатии его до атмосферного давления для возможности удаления в окружающую среду, требует затрат полезной работы, т. е. компенсации.

Использование же потенциальной энергии газа, выделяющегося из геотермальной воды, в турбокомпрессорных геотермальных уста­новках открытого цикла не требует компенсации и является «чистой» добавкой работе, совершаемой паром.

Из рассмотренного следует, что турбокомпрессорная геотермаль­ная^ установка открытого цикла аналогично установке закрытого цикла позволяет значительно глубже использовать теплоту геотер­мальной воды по сравнению с паротурбинной установкой.

Одновременно она обладает намного меньшей сложностью и металлоемкостью, а использование в качестве холодного источника атмосферы обещает, ей хорошую перспективу как тепловому двига­телю, т. е. преобразователю геотермальной энергии воды в механиче­скую работу.

Места отсыпки грунта

Основная масса городских отходов в развитых странах удаляется путем их транспортировки в места отсыпки грунта, где находятся свалки мусора. Эти свалки представляют собой гигантский биореак­тор, загруженный сырьем при фактически нулевой стоимости. Метан, медленно образующийся в биомассе, должен быть собран и использо­ван аналогично тому, как это имеет место в обычных реакторах.

Экономика этого процесса будет рассмотрена позднее; по имею­щимся данным, она значительно более благоприятна, чем при исполь­зовании реакторов интенсивного типа.

ИСПОЛЬЗУЕМ ЭНЕРГИЮ БИОМАССЫ

Что такое «биомасса»

Биомасса — это органические вещества, сохранившие в себе энер­гию Солнца, благодаря процессу фотосинтеза.

Источниками топлива из биомассы являются наземная и водная растительность, отходы сельскохозяйственного и лесозаготовитель­ного производства, муниципальные отходы и отходы животновод­ства. Она образуется в ходе работы пищевой цепочки. В первоначаль­ном виде существует в форме растений, затем передается травоядным животным, а если их съедят — то и плотоядным. Человек тоже ест растения и животных.

Биомасса характеризуется способностью к возобновлению, низ­кой ценой, небольшим объемом выбросов, исключением повышения содержания С02 в атмосфере, неэкономичностью транспортировки на большие расстояния и сильной тенденцией образования нагара и шлака при сжигании.

При сгорании биомассы (древесины, высушенной растительности) освобождается накопленная энергия и углекислый газ.

image427Примечание.

На сегодняшний день эта отрасль занимает второе место после гидроэнергии из списка альтернативных источников из-за своей дешевизны и доступности. Она составляет 15% от мировой поставки энергии и до 35%— в развивающихся странах (http:// energyforever. ru).

В принципе, биомасса — это любой материал органического проис­хождения, не только растения и животные, но и экскременты животных или остатки растений, такие как солома. Бумага и целлюлоза, отходы
бойни, органические отходы, растительное масло и этанол — все это биомасса и может быть использовано для производства энергии.

Используются разные методы для превращения этих материалов в жидкий, твердый или газообразный источник энергии. Часто суще­ствует несколько путей превращения биомассы в энергию. Она, напри­мер, может быть сожжена в энергетической установке для получения тепла, переброжена в анаэробном реакторе, чтобы потом получить газ и затем электричество и тепло или может быть преобразована в син­тетический газ или топлива путем термохимической газификации.

Одновременное получение холода, тепла и электроэнергии из биогаза

Достоинства и недостатки технологии

image468 image470Определение.

Когенерация — это высокоэффективное использование первичного источника энергии (биогаза, газа или дизельного топлива) для полу­чения двух форм полезной энергии — тепловой и электрической.

Определение.

Тригенерация — это выработка одновременно трех форм полезной энергии—электричества, тепла, горячей воды, холода и холодной воды.

Система когенерации (рис. 7.12) позволяет использовать то тепло, которое в других случаях просто теряется. При этом снижается потреб­ность в покупной энергии, что способствует уменьшению производ­ственных расходов. Главное преимущество состоит в том, что преоб­разование энергии здесь происходит с большей эффективностью.

Рассмотрим КПД. Любое производство электроэнергии, исполь­зующее технологию сжигания топлива, сопровождается выделением тепла. В газопоршневых агрегатах максимальный КПД по выработке электроэнергии составляет около 40%.

Тепловой КПД таких установок составляет 40—45%. То есть полезно используется только половина высвобождаемой энергии, а другая половина уходит с теплом в окружающую среду.

дизтопливо или газ 100%

БТЭС

Л =37% Л =63%

т

Подпись: дизтопливо или газ 100% БТЭС Л =37% Л =63% т

35,7%} электроэнергия 53,8%^ г

Подпись: 35,7%} электроэнергия 53,8%^ г

9,2%j^ 1,3% Потери 10,5%

► полезное тепло

Подпись: ► полезное тепло
Подпись: 9,2%j^ 1,3% Потери 10,5%

Ситуация меняется, если использовать технологию когенерации и. тригенерации. Когенерационная установка, одновременно с производ­ством электроэнергии полезно утилизирует теплоту двигателя, произ­водя горячую воду или пар. Это резко повышает общий КПД установки. В некоторых случаях он достигает 90%. Отношение электрической

Рис 7.72. Распределение потоков энергии при работе когенерационной установки

мощности к тепловой составляет 1:1,2. Тригенерация. Использование технологии тригенерации позволяет сохранить высокий КПД кругло­годично. Например, летом отопление не требуется, но необходимо кон­диционирование жилых помещений, офисов, больниц. В промышлен­ности широко используется холодная вода и холод.

Недостатком когенераторов является только ограниченная мощ­ность до 3 МВт для одной машины. Средний промышленный потре­битель в России имеет установленную мощность в 1—2 МВт. При необходимости могут быть установлены несколько параллельно рабо­тающих когенераторов.

Прямое преобразование тепловой энергии

Схема ОТЭС на термоэлектрических преобразователях показана на рис. 5.13.

В основе ее действия — явление Зеебека, заключающееся в возник­новении разности потенциалов в электрической цепи, составленной из материалов с различной концентрацией носителей заряда, места соединений которых нагреты до разных температур.

Действие такой системы полностью описывается законами термодина­мики, справедливыми для обычных ОТЭС. КПД такого преобразователя, выполненного на полупроводниковых элементах, достигает 10 %. Это зна­чительно больше, чем у систем, работающих по циклу Ренкина и Клода.

Соединительные Изолятор Поверхностное Полупроводниковые шины изолирующее элементы с п — и р —

покрытие проводимостью

6 в

Рис. 5.13. Схема ОТЭС с прямым преобразованием тепловой энергии в электрическую: а — устройство отдельного блока; б, в — варианты устройства термоэлектрического преобразователя

Подпись: Соединительные Изолятор Поверхностное Полупроводниковые шины изолирующее элементы с п - и р - покрытие проводимостью 6 в Рис. 5.13. Схема ОТЭС с прямым преобразованием тепловой энергии в электрическую: а — устройство отдельного блока; б, в — варианты устройства термоэлектрического преобразователя

Кроме того, в системах таких ОТЭС к минимуму могут быть све­дены потери на собственные нужды станции. Величина термо-ЭДС для полупроводниковых пар может достигать нескольких милливольт на

градус (для металлических термопар они примерно в 1000 раз ниже). Например, постоянная Зеебека для кристаллов теллурида висмута с п — и р-проводимостью равна 3,14×10"4 В/К.

Другое достоинство полупроводниковых систем — возможность обеспечения достаточно высокой теплоизоляции между нагревателем и холодильником, что сильно влияет на КПД систем.

К недостаткам таких систем относятся достаточно высокая стои­мость материалов, из которых изготовляются элементы, и необходи­мость изолировать спаи от непосредственного контакта с морской водой. Происходит шунтирование через воду соседних элементов, обладающих достаточно высоким собственным сопротивлением, и, следовательно, снижение мощности, выдаваемой в цепь нагрузки. В свою очередь, изолирование спаев приводит к удорожанию преоб­разователей и ухудшению их показателей. Работы, выполненные груп­пой исследователей из университета Осаки (Япония), показывают, что при отсутствии изолятора в несколько раз увеличивается съем полез­ной мощности. Однако необходимо иметь в виду, что в опытах япон­ских исследователей в качестве носителя энергии использовалась не сама морская вода, а фторуглеродистые соединения.

ОТЭС, созданные на описанном принципе, вероятно, можно при­менить для обеспечения электроэнергией комплексов подводной добычи полезных ископаемых на океанском дне.

Технология сухой перегонки

За исключением производства высокоценного древесного угля, используемого как в качестве топлива, так и для других целей, сухая перегонка биомассы в промышленном масштабе не используется в развитых странах. Древесный уголь обычно получают путем нагрева­ния древесины до 350 °С в пиролитическом реакторе. Выход состав­ляет около 35% топлива с энергоемкостью примерно 29 ГДж/т, то есть сохраняется около 50% энергии древесины.

Ниже даются комментарии по другим предложенным процессам. В одном из процессов используется пиролиз при 500—600 °С и давлении 20 бар с получением синтеза газа. Наконец, быстрый пиролиз сухой биомассы при 800 °С ведет к образованию олефинов, которые могут быть полимеризованы в автомобильный бензин (его заменитель).

В «западном» процессе (ранее процесс Гаррота) сырье должно быть высушено и тонко размолото. Теплота, необходимая для осуществле­ния пиролиза, получается в результате реакции. Газы удаляются из угля в циклонном сепараторе до очистки от жидкостей и остающихся твердых частиц, а затем уголь и газы возвращаются в пиролизатор. Схематическая диаграмма этого процесса показана на рис. 7.4.

В целях максимизации выхода жидкости время пиролиза сокраща­ется до нескольких секунд. Выход пиролитического масла составляет около 40% в расчете на сухое сырье. Пиролитическое масло не смешива­ется с топливной нефтью, имеет коррозионные свойства, аналогичные свойствам уксусной кислоты, и может храниться только в течение при­мерно двух недель вследствие продолжающихся химических реакций.

Для использования этого масла в качестве топлива необходимо специальное оборудование. Теплотворная способность пиролитиче­ского масла составляет около 53% теплотворной способности топлив­ной нефти (по массе). Выход угля составляет от 20 до 50%,содержание

Биомасса Биомасса

image439

газы

Рис. 7.4. Пиролиз биомассы

золы в угле до 50%. Газы имеют низкую теплотворную способность и содержат до 65% двуокиси углерода и до 8% сероводорода.

Свойства пиролитического масла Углерод — 57,5%. Водород — 7,6%. Кислород — 33,4%. Энергоемкость — 24 ГДж/т. Плотность — 1,3 г/см3.

В ходе процесса древесные стружки проходят через печь с продук­тами реакции. В качестве катализатора добавляется древесная зола. Газы, жидкости и уголь газифицируются с помощью пара, присутству­ющего в древесине. Этот процесс считается авто термическим вслед­ствие экзотермического характера разложения древесины и переноса тепла от горячих продуктов в систему.

Третий процесс включает быструю паровую газификацию биомассы с образованием смеси олефиновых углеводородов. Высушенную био­массу размалывают в муку, насыщают паром и остаточными газами полимеризационного реактора и нагревают до 800 °С.

Эндотермическая реакция поддерживается путем сжигания пиролитического угля (побочного продукта) и отходящих газов. Образовавшиеся газы содержат около 4% по массе этилена, полиме — ризующегося до высших углеводородов при давлении около 56 кг/см3 и температуре 500 °С. Однако побочные продукты не обеспечивают достаточного количества теплоты для протекания процесса, что вызывает необходимость сжигания дополнительного количества дре­весины. Выход автомобильного бензина и масла определяется терми­ческой эффективностью 11,9% в расчете на сухое древесное сырье.

Геотермальные тепловые насосы

Что такое низкопотенциальная энергия Земли

Низкопотенциальная энергия Земли (НГР) — это тепло грунта, грунтовых вод и поверхностных водоемов, аккумулированная в поверхностных слоях земной коры.

Эта энергия может с успехом использоваться для обеспечения тепло — и хладоснабжения (кондиционирования), горячего водоснаб­жения зданий и сооружений всех типов, а также энергоснабжения технологических процессов (www. cleandex. ru).

Технология их освоения заключается в использовании систем извлечения энергии, ее обработки и доставки теплоносителя к потре­бителю. Главным компонентом подобных систем являются геотер­мальные тепловые насосы. Пример использования теплового насоса в доме приведен на рис. 6.6.

image420

Рис. 6.6. Пример использования теплового насоса в доме

0

Определение.

Геотермальные тепловые насосы (ГТН) — это устройства, осу­ществляющие обратный термодинамический цикл, благодаря чему низкопотенциальная энергия переносится на более высокий уровень.

Идея теплового насоса высказана полтора века назад британским физиком Уильямом Томсоном (более известный как лорд Кельвин). Это придуманное им устройство он назвал «умножителем тепла».

Помимо геотермального тепла, источником энергии для тепловых насосов может служить тепло сточных и оборотных вод, что позво­ляет параллельно решать проблему эксплуатации вторичных энерго­носителей.

На сегодняшний день используются:

♦ парокомпрессионные геотермальные тепловые насосы (ПТН), работающие на хладонах;

♦ адбсорционные геотермальные тепловые насосы (АТН), в кото­рых рабочими веществами выступают вода и водный раствор бромистого лития.

Н

Примечание.

Однако, в связи с меньшей эффективностью и сложностью кон­струкции АТН не получили распространения.

Технология получения биодизельного топлива «ТЕКМАШ»

Особенности технологии

Уникальность технологии «ТЕКМАШ» основывается на гидроди­намической обработке компонентов реакции в виде растительного масла и метилового спирта, что приводит к интенсификации проте­кания реакции трансэтерификации — основной реакции получения биодизельного топлива (http://new. tekmash. ua).

Увеличение полноты протекания реакции происходит:

♦ во-первых, за счет гидромеханического воздействия на молеку­лярном уровне на компоненты реакции;

♦ во-вторых, за счет эффективного перемешивания среды, что обеспечивает транспортировку метилового спирта и гидрооки­си калия или натрия в требуемой пропорции в любую область прохождения реакции.

В

Примечание.

Это полностью исключает попадание в биодизельное топливо метилового спирта либо растительного масла, не вступивших в реакцию.

Интенсификация процесса протекания реакции происходит за счет кавитационного воздействия на компоненты реакции в специально спроектированных неразрушаемых насадках.

Известно, что при кавитационном воздействии на обрабатываемую среду, давление и температура в локальной зоне воздействия повы­шаются до тысяч градусов и атмосфер. При таких условиях реакция трансэтерификации происходит практически мгновенно и при мини­мальном энергопотреблении.

Для эффективного перемешивания компонентов реакции исполь­зуется специальная технология «ТЕКМАШ» и оборудование в виде струйно-вихревых гидродинамических нагревателей типа ТЕК-БД.

В выпускаемых компанией «ТЕКМАШ» замкнутых гидродинами­ческих аппаратах полностью отсутствуют застойные зоны, что обеспе­чивает 100%-ую полноту прохождения реакции трансэтерификации.

Соответствие стандарту

Использование подхода «ТЕКМАШ» позволило при получении биодизеля осуществить основную реакцию этерификации с макси­мальной полнотой. Это дало возможность вписаться в американский стандарт качества биодизельного топлива ASTM, получив при этом:

♦ минимальное количество отходов, требующих утилизации (не более 2 % от массы растительного масла);

♦ минимальное энергопотребление (не более 10—20 кВт-ч) на 1 тонну произведенного биодизельного топлива.

Для сравнения, при производстве биодизельного топлива по клас­сической технологии с применением нагрева с помощью электрокотла энергопотребление для получения 1 тонны биодизеля лежит в преде­лах 50—100 кВт-ч, т. е. практически в 3 раза больше, чем по технологии «ТЕКМАШ».

Сравнительная таблица (табл. 7.5) использования технологии «ТЕКМАШ» и классической технологии получения биодизельного топлива (из расчета производительности одна тонна в час).

Сравнительная таблица технологий Таблица 7.5

Параметры

Классическая

технология

Технология «ТЕКМАШ»

Удельные энергозатраты на 1 т масла, кВт-ч

50—60

10—15

Полнота прохождения реакции, %

92—96

97—99

Количество метилового спирта, % от масла

14—20

14—18

Необходимая площадь, не более, м2

150—200

25—40