Category Archives: Альтернативные источники энергии и энергосбережение

Подготовка биомассы

Перед сжиганием тем или иным способом большинство типов био­масс необходимо определенным образом подготовить. Типы биомасс могут варьировать:

♦ от плотных, относительно сухих материалов, таких, как древесина;

♦ до очень влажных, обладающих низкой теплотворной способно­стью, таких как канализационные стоки и морские водоросли.

Другие материалы, такие как солома, обладая низкой влажностью, имеет малую плотность, и поэтому работа с ними является затруд­нительной. Наиболее важными этапами подготовки биомассы явля­ются:

♦ измельчение;

♦ сортировка по размерам частиц;

♦ сушка;

♦ хранение.

Необходимые размеры древесины получают путем распила, рас­кола и измельчения. Предварительная сушка на воздухе проводится не всегда, в зависимости от техники сжигания. Используют и другой метод подготовки древесины, называемый «уплотнением». В ходе этого про­цесса древесину сушат, измельчают, сортируют по размерам частиц и добавляют связующие агенты. Полученный материал брикетируют или прессуют в более плотную массу с содержанием влаги около 7%.

Н

Примечание.

В целом эта технология способствует улучшению свойств био­массы как топлива, приближая их к свойствам угля.

Этот процесс является дорогостоящим и может более чем в двое повысить цену топлива. Но он, тем не менее, обеспечивает подучение материала, способного заменить обычные виды топлива; в некоторых районах потребители готовы оплачивать эти лишние издержки.

Для транспортировки к месту использования солому прессуют в кипы. Кипы имеет низкую плотность (62—200 кг/м3 в зависимости от типа пресс-подборщика). Они должны быть небольшими для облег­чения погрузочно-разгрузочных работ вручную, что ведет к высо­ким транспортным расходам. Кроме того кипы соломы неудобны для автоматической подачи в печи для сжигания. Делались предложения относительно измельчения соломы перед использованием, но это еще больше увеличивало издержки по подготовке биомассы.

Твердые отходы животноводства содержат обычно 70—85% воды. Перед сжиганием необходима предварительная сушка, которую также можно осуществить путем использования топочных газов. Аналогичные методы применимы к другим материалам с высокой влажностью. При этом количество получаемого тепла в значительной мере снижается вследствие использования его части для высушивания топлива.

Хранение биологического сырья представляет особую проблему вследствие его большого объема, зачастую сезонного его поступления, а также склонности к биологическому разложению. Обычные виды топлива не имеет подобного рода недостатков. В некоторых случаях невозможно обеспечить подачу топлива в соответствии с необходимым выделением тепла, поэтому необходима установка печей (бойлеров), способных работать как на обычном топливе, так и на биомассе.

Области применения когенерационных систем

В качестве источника энергии в мини-ТЭЦ используются двигатели внутреннего сгорания (ДВС): дизельные, газовые и газотурбинные. Энергия, выделяющаяся при сгорании топлива, переходит в энергию электричества и утилизируюмую энергию тепла.

В газовых двигателях могут использоваться такие виды газов как: природный газ пропан, факельный газ, газ сточных вод, биогаз, газ мусорных свалок, коксовый газ, попутный газ, пиролизный газ, дре­весный газ, газ химической промышленности.

Н

Примечание.

Наибольшей эффективностью, надежностью и универсальностью отличаются установки на основе газовых (газопоршневых) двигателей.

Это вызвано, прежде всего, современными требованиями к эколо­гической чистоте окружающей среды, а также к снижению эксплуа­тационных расходов на органическое топливо и доступностью его использования.

Газовые двигатели используются для работы в составе генератор­ных установок, предназначенных для постоянной и периодической работы (снятие пиковых нагрузок) с комбинированной выработкой электроэнергии и тепла (когенерация).

Кроме того, установки могут использоваться для обеспечения работы абсорбционных холодильных установок (тригенерация) в системах кондиционирования.

Секционирование когенераторных установок из нескольких бло­ков, позволяет достичь эффективности такой же, как и у большой установки, при этом получая ряд значительных преимуществ.

Это точное управление мощностью. Максимальный КПД достига­ется при загрузке на 100%. Это значит, что при секционировании, в минимальные часы энергопотребления, есть возможность нагрузить часть блоков, а часть — оставить в нерабочем состоянии. Это приво­дит к увеличению ресурса всей системы в целом.

В последнее время стремительно растет количество оборудова­ния, которое использует для своей работы биогаз, свалочный газ, газ с водоочистных станций или другое альтернативное топливо как, например, метан. Принцип использования биогаза в когенерацион — ных установках представлен на рис. 7.13.

Биогазовая станция строится, прежде всего, возле очистных соо­ружений сточных вод, на свалках коммунальных отходов или в сель­скохозяйственных предприятиях, занимающихся животноводством.

Поскольку биогаз обычно возникает как побочный продукт во время обработки органических отходов, эксплуатация когенерацион — ных установок, работающих на этом виде топлива, является с эконо­мической точки зрения очень выгодной.

image476Примечание.

Новое энергетическое законодательство в таком случае гаран­тирует потребителям когенерационной технологии, которые используют возобновляемые источники энергии, долговременные стабильные закупочные цены электричества на экономически при­влекательном уровне.

SHAPE * MERGEFORMAT

image477

image479

для поставок в сеть

 

image481

для поставок в сеть

 

Нагнетатель с фильтром

image483

для поставок в сеть

Рис. 7.13. Принцип использования биогаза: а — на очистных сооружений сточных вод; б—на свалке отходов; в — при использовании отходов животноводческих ферм

 

в

 

Использование энергии приливов

Приливные колебания уровня в огромных океанах планеты вполне предсказуемы. Основные периоды этих колебаний:

♦ суточные продолжительностью около 24 ч;

♦ полусуточные — около 12 ч 25 мин.

Разность уровней между последовательными самым высоким и самым низким уровнями воды (высота прилива R) составляет 0,5—10 м.

Н

Примечание.

Первая цифра (0,5 м) наиболее характерна, вторая (10 м) достига­ется и даже превосходится лишь в некоторых особенных местах вблизи побережья континентов.

Во время приливов и отливов перемещение водных масс образует приливные течения, скорость которых в прибрежных проливах и между островами может достигать примерно 5 м/с (http://renewables. ru).

Поднятую на максимальную высоту во время прилива воду можно отделить от моря дамбой или плотиной. Места с большими высотами приливов обладают большими потенциалами приливной энергии. Однако не только этот фактор важен для развития приливной энерге­тики: надо принимать во внимание и капитальные затраты, и будущую прибыль от создания соответствующих приливных электростанций (ПЭС).

Энергия приливных течений может быть преобразована подобно тому, как это делается с энергией ветра. Преобразование энергии при­ливов использовалось для приведения в действие сравнительно мало­мощных устройств еще в средневековой Англии и в Китае.

Из современных ПЭС наиболее хорошо известны:

♦ крупномасштабная электростанция Ране мощностью 240 МВт, расположенная в эстуарии реки Ла Ране, впадающей в залив Сен Мало (Бретань, Франция);

♦ небольшая опытная станция мощностью 400 кВт в Кислой губе на побережье Баренцева моря (Россия).

Из мест, которые давно приковывают внимание гидростроителей, следует назвать эстуарий реки Северн в Великобритании и залив Фанди на восточном побережье Северной Америки на границе между США и Канадой.

Высота, ход и периодичность приливов в большинстве прибреж­ных районов хорошо описаны и проанализированы благодаря потреб­ностям навигации и океанографии. Поведение приливов может быть предсказано достаточно точно, с погрешностью менее 4%. Таким образом, приливная энергия оказывается весьма надежной формой возобновляемой энергии.

При её преобразовании возникают и определенные неудобства:

♦ несовпадение основных периодов возникновения приливов (12 ч 25 мин и 24 ч 50 мин), связанных с движением Луны, с при­вычным для человека периодом солнечных суток (24 ч), в связи с чем оптимум приливной генерации находится не в фазе с по­требностями в энергии;

♦ изменение высоты прилива и мощности приливного течения с периодом в две недели, что приводит к колебаниям выработки энергии;

♦ необходимость создания потоков воды с большим расходом при сравнительно малом перепаде высот, что заставляет использо­вать большое число турбин, работающих параллельно;

♦ очень высокие капитальные затраты на сооружение большин­ства предполагаемых ПЭС;

♦ потенциальные экологические нарушения и изменение режимов эстуариев и морских районов.

Вблизи побережья и между островами приливы могут создавать достаточно сильные течения, пригодные для преобразования энергии. Устройства для преобразования энергии приливных течений будут практически сходны с аналогичными устройствами, приводимыми в действие течениями рек.

Соотношения, позволяющие оценить мощность приливных тече­ний, подобны тем, которые используются в ветроэнергетике, при этом следует иметь в виду, что плотность воды во много раз выше плотно­сти воздуха, а скорости течения воды сравнительно низки.

Рис. 5.17. Схема электростанции на приливном течении

Подпись: Рис. 5.17. Схема электростанции на приливном течении

Уже разработан целый ряд современных устройств для преобразова­ния энергии приливных течений, один из которых показан на рис. 5.17. Капитальные затраты на создание подобных устройств в расчете на 1 кВт установленной мощности достаточно высоки, поэтому их строительство целесообразно лишь в отдаленных районах с высокими скоростями при­ливных течений, где любые альтернативные источники энергии еще более дороги. На эту тему интересна книга Волеваха Н. М., Волеваха В. А. Нетрадиционные источники энергии. — К: Вища школа. — 1988. — 58 с.

Основы теории приливной энергетики достаточно просты. На рис. 5.18 показано, что ПЭС может работать как при опустошении

Поверхность бассейна площадью А

■ Высокая вода

Подпись: Поверхность бассейна площадью А ■ Высокая вода

Высота прилива R Низкая вода

Подпись: Высота прилива R Низкая вода

Подпись: -я

Плотина с турбинами

Рис. 5.18. Схема извлечения
приливной энергии

Подпись: Плотина с турбинами Рис. 5.18. Схема извлечения приливной энергии бассейна, так и при его наполнении. Оптимальная станция, использую­щая реверсируемые гидроагрегаты, которые, кроме того, можно еще использовать и в насосном режиме для повышения уровня в бассейне, может перерабатывать до 90% потен­циальной энергии прилива.

Сжижение/восстановление

Были разработаны предложения по превращению биомассы в жид­кость, напоминающую тяжелую топливную нефть, путем реакции ее с восстановительными газами (оксид углерода и водород) в присут­ствии катализатора. Обычно необходимо давление 250 бар и темпе­ратура 600—700 °С. Процессы сжижения обычно предполагают под­готовку восстановительных газов путем пиролиза или окислительной газификации большего количества биомассы. В редких случаях можно получить дешевый водород из других источников, например при элек­тролизе воды на гидроэлектрических установках.

Источники энергии

По виду теплоносителя во входном и выходном контурах насосы делят на шесть типов: «грунт-вода», «вода-вода», «воздух-вода», «грунт-воздух», «вода-воздух», «воздух-воздух».

При использовании в качестве источника тепла энергии грунта трубопровод, в котором циркулирует антифриз, зарывают в землю на глубину 1 м. Минимальное расстояние между трубами коллектора — 0,8… 1 м.

Специальной подготовки почвы не требуется. Но желательно использовать участок с влажным грунтом, если же он сухой, контур надо сделать длиннее. Ориентировочное значение тепловой мощно­сти, приходящейся на 1 м трубопровода, 20—30 Вт. Таким образом, для установки теплового насоса производительностью 10 кВт необходим земляной контур длиной 350—450 м, для укладки которого потребу­ется участок земли площадью около 400 м2 (20×20 м). При правильном расчете контур не влияет на зеленые насаждения.

Если свободного участка для прокладки коллектора нет или в каче­стве источника тепла используется скалистая порода, трубопровод опускается в скважину. Не обязательно использовать одну глубокую скважину, можно пробурить несколько неглубоких, более дешевых, чтобы получить общую расчетную глубину. Иногда в качестве сква­жин используют фундаментные сваи.

Ориентировочно на 1 пог. м скважины приходится 50—60 Вт тепло­вой энергии. Таким образом, для установки теплового насоса произ­водительностью 10 кВт необходима скважина глубиной 170 м.

Существенно снизить необходимую глубину скважины и увели­чить отбор тепловой энергии до 700 Вт на на 1 пог. м скважины позво­ляет применение активного контура «Fill well» первичного преобра­зователя теплового насоса (необходимым условием является наличие обводненого горизонта вскрываемого скважиной).

Среди тепловых насосов, использующих тепло поверхностного слоя земли, выделяется система EarthLinked® с подземным медным теплообменником DIRECT AXXESS®.

Хладагент подается непосредственно к источнику земного типа, что обеспечивает высокую эффективность геотермальной отопитель­ной системы. Испаритель устанавливают в грунт горизонтально ниже глубины промерзания или в скважины диаметром 40—60 мм пробу­ренные вертикально либо под уклоном до глубины 15—30 м.

Благодаря такому инженерному решению устройство теплообмен­ного контура производится на площади всего несколько квадратных метров, не требует установки промежуточного теплообменника и дополнительных затрат на работу циркуляционного насоса.

При использовании в качестве источника тепла близлежащего водоема контур укладывается на дно. Этот вариант принято считать идеальным: не слишком длинный внешний контур, «высокая» температура окружаю­щей среды (температура воды в водоеме зимой всегда положительная), высокий коэффициент преобразования энергии тепловым насосом.

Ориентировочное значение тепловой мощности на 1 м трубопро­вода — 30 Вт. Таким образом, для установки теплового насоса произ­водительностью 10 кВт необходимо уложить в озеро контур длиной 300 м. Чтобы трубопровод не всплывал, на 1 пог. м устанавливается около 5 кг груза.

Для получения тепла из теплого воздуха (например, из вытяжки системы вентиляции) используется специальная модель теплового насоса с воздушным теплообменником. Тепло из воздуха для системы отопления и горячего водоснабжения также можно собирать на про­изводственных предприятиях.

Если тепла из внешнего контура все же недостаточно для отопления в сильные морозы, практикуется эксплуатация насоса в паре с допол­нительным генератором тепла (в таких случаях говорят об использо­вании бивалентной схемы отопления). Когда уличная температура опускается ниже расчетного уровня (температуры бивалентности), в работу включается второй генератор тепла — чаще всего небольшой электронагреватель (тен).

Горючее для автомобиля своими руками

Достоинства

Одним из перспективных видов автомобильного горючего, в насто­ящее время, является метиловый спирт (http://ugle-kislota. narod. ru).

Метиловый спирт (метанол) представляет собой бесцветную вос­пламеняющуюся жидкость со слабым спиртовым запахом, темпера­тура замерзания -98 °С, кипения +65 °С. Хорошо смешивается с водой. Как и все спирты, он обладает высокой детонационной стойкостью, октановое число метанола составляет 114,4 единицы. Для сравнения, октановое число этанола (винный, этиловый спирт) — 111,4 ед.

Из всех антидетонационных компонентов бензина, метанол явля­ется наиболее эффективной добавкой в отношении снижения выбро­сов СО, СН и NOx. Может метанол использоваться и как самостоя­тельное автомобильное горючее, в этом случае метанол имеет опреде­ленные достоинства.

Метанол представляет собой «чисто» сгорающее топливо, обла­дает лучшими топливными характеристиками, чем бензин, вследствие чего, при его применении повышается КПД двигателей внутреннего сгорания. Современные бензиновые двигатели могут хорошо рабо­тать на метаноле. При этом технические характеристики двигателя улучшаются:

♦ высокая детонационная стойкость;

♦ абсолютное отсутствие сернистой коррозии двигателя и выбро­сов серы и сажи в выхлопе;

♦ минимальное нагарообразование в двигателе;

♦ на 50% меньшая токсичность продуктов сгорания.

Следует отметить, что повышается КПД, благодаря внутреннему охлаждению и повышению степени сжатия высокий коэффициент наполнения цилиндров горючей смесью (по сравнению с бензином выигрыш в мощности при работе на метаноле достигает 10%).

Указанные достоинства метанола привели к тому, что он уже давно используется как топливо на гоночных автомобилях и авиамоделях, спортивных мотоциклах, где требуются компактные и вместе с тем мощные двигатели. Многие исследовательские институты считают его топливом будущего.

Гидроаккумулирующая электростанция на энергии морских волн

Необычное устройство Searaser и проект под названием Dartmouth Wave Energy (английский изобретатель Элвин Смит (Alvin Smith) представляет собой волновую электростанцию, использующую энер­гию вертикального движения поплавка.

Однако сам поплавок не имеет электрических систем и представ­ляет собой механический насос, который закачивает морскую воду на большую высоту в прибрежные скалы (http://aenergy. ru/872).

Этот проект — необычная мини Гидроаккумулирующая электро­станция (по-английски Pumped-storage hydroelectricity).

В основе установки — два поплавка (рис. 5.3), способных двигаться друг относительно друга. Верхний раскачивается волнами, нижний соединен с дном при помощи цепи и якоря. Между поплавками нахо­дится «насосная станция» (цилиндр с поршнем двойного действия, который качает воду при движении вниз и вверх) и клапанами с выходными трубами.

— Шланг

Рис. 5.3. Система поплавков

image362

Автоматическая подстройка высоты положения верхнего поплавка в зависимости от уровня моря, который меняется в прилив и отлив — телескопическая труба, раздвигающаяся и складывающаяся под дей­ствием сил Архимеда и тяжести. К этой «приливной» колонне кре­пится насос с верхним поплавком.

Вода подается на сушу, в горы. В горах устраивается бассейн, в котором вода накапливается и выпускается обратно в море, по пути вращая турбину электростанции, идентичной традиционной ГЭС, но без дамбы.

Преимущества у подобной установки следующие. В поплавке нет проводов, магнитов, катушек, контактов и герметичных отсеков для оборудования, что делает его гораздо более дешевым, простым и надежным. Турбины и электрогенераторы волновой станции, рас­положенные на берегу, — давно опробованная и испытанная на ГЭС техника. В отличие от традиционной ГАЭС, Searaser не требует ниж­него водохранилища. В отличие от волновых электростанций, эта установка решает проблему неравномерности силы волн.

По оценке создателя машины, Searaser может поднимать морскую воду на высоту до 200 м. Один полноразмерный поплавок Searaser раз­вивает мощность 0,25 МВт.

Мелкомасштабные методы сжигания

Самый простой метод сжигания биомассы — это сжигание на открытом огне. В этих случаях эффективность сжигания очень низка. При сжигании топлива в традиционных печах отношение выделив­шейся энергии к подведенной энергии может быть менее 10%. В последние годы были сконструированы эффективные дровяные печи и бойлеры.

Значительная потеря тепла в простых топках происходит из-за чрезмерной тяги в дымоходе.

Н

Примечание.

Простое ограждение для огня и ограничение тяги повышает эффек­тивность сгорания до 25%.

В настоящее время имеется значительно более эффективные дровя­ные печи. Комната, где установлена такая печь, получает до 70% энер­гии сгорания топлива или в результате излучения, или в результате конвекции. Однако средняя эффективность дровяных печей состав­ляет все еще около 50%.

Основным недостатком многих систем является:

♦ трудность обеспечения автоматической подачи топлива;

♦ необходимость постоянного внимания со стороны пользователей.

В целях частичного решения проблемы были созданы системы,

предназначенные для использования многих видов топлива; при желании работа й автоматическом режиме достигается путем пере­ключения на ископаемые виды топлива.

Основной проблемой небольших систем сжигания биомассы явля­ется накопление агрессивных масел и смол в более холодных частях дымохода. Эти скопления необходимо периодически удалять; дымо­ход можно очищать также путем пропускания через него горячих газов (однако наряду с удалением нежелательных соединений теря­ется и полезное тепло).

Основные технические параметры

Основные технические параметры когенерационных установок (на базе когенерационных установок TEDOM) представлены в табл. 7.6.

Основные технические параметры когенерационных установок Таблица 7.6

Наименование

установки

Электрическая мощность, кВт

Тепловая мощность, кВт

Расход газа*, мЗ/час

Топливо — ПРИРОДНЫЙ ГАЗ

Premi F25 А (Р)

25

47

8,4

Premi F25 S (Р)

24

47

8,4

Cento Т88

81

123

25,2

Cento Т100 S(P)

100

143

30,3

Cento Т120 S(P)

118

169

35,0

Cento Т150 S(P)

150

211

43,7

Cento Т160 S (P)

160

220

46,1

Cento T300 S (P)

302

422

91,0

Quanto C400 S (P)

412

561

117

Quanto C500 S (P)

514

645

143

Quanto C770 S (P)

785

1010

219

Quanto C1000 S (P)

1050

1387

292

Quanto C1200 S(P)

1172

1519

318

Quanto C1500 S(P)

1465

1845

402

Quanto C2000 S (P)

2010

2166

504

Топливо — БИОГАЗ

Premi F25 AP BIO

23

41,5

11,6

Cento T88 SP BIO

76

113

35,6

Cento T100 SP BIO

95

130

42,5

Cento T150 SP BIO

142

193

62,6

Cento T160 SP BIO

150

203

65,3

Quanto C770 SP BIO

785

1344

374

Quanto C1100 SP BIO

1100

1441

459

*Данные параметры действительны для природного газа с низшей теплотворной способностью 34 МДж/м3. Расход приведен для биогаза, содержащего 65% метана при нормальных условиях (00С, 101,325 кПа). В случае других условий данные могут отличаться.

Сокращения в таблице: А — асинхронный генератор; S — синхронный генератор; Р — параллельная работа с электросетью

Успешного Вам использования АЛЬТЕРНАТИВНЫХ ИСТОЧНИКОВ ЭНЕРГИИ!

СПИСОК РЕСУРСОВ СЕТИ ИНТЕРНЕТ

http://aenergy. ru/

http://allfuel. ru/

http://alt-energy. net. ua/

http://alt-energy. org. ua/

http://audens. ru/

http://avtonom. com. ua/

http://bio-energetics. ru/

http://blog. ae. net. ua/

http://delaysam. ru/

http://eko-save. ru/

http://elar. usu. ru/

http://electro-shema. ru/

http://energetika. biz. ua/

http://energoatom. kiev. ua/

http://energyforever. ru/

http://energyfuture. ru/

http://epizodsspace. airbase. ru/

http://fihelp. ru/

http://firstlook.3tier. com/

http://forum. ixbt. com/

http://germarator. ru/

http://howitworks. iknowit. ru/

http://idea-master. ru/

http://kes. ucoz. ua/

http://luch. biz/

http://manbw. ru/

http://mobipower. ru/

http://new. tekmash. ua/

http://newenergetika. narod. ru/

http://ntpo. com/

http://patlah. ru/

http://physiclib. ru/

http://portal. tpu. ru:7777/

http://poselenie. ucoz. ru/

http://pusk. by/

http://renewables. ru/

http://rosinmn. ru/

http://ru. teplowiki. org/

http://sam. delaysam. ru/

http://samodelka. ucoz. ru/

http://sheerai. ya. ru/

http://solar. atmosfera. ua/

http://solarshop. com. ua/

http://techvesti. ru/

http://tehnojuk. ru/

http://ugle-kislota. narod. ru/

http://visten. ru/

http://windstation. ae. net. ua/

http://www. 1000ideas. ru/
http://www.306.ru/

http://www. active-house. ru/

http://www. aerotecture. com/

http://www. apxu. ru/

http://www. atmosfera. ua/

http://www. audens. ru/

http://www. avante. com. ua/

http://www. bazis-group. com/

http://www. bio-energetics. ru/

http://www. cleandex. ru/

http://www. ecoatominf. ru/

http://www. energoprojects. ru/

http://www. energy2006.net/

http://www. energyarea. com. ua/

http://www. energy-bio. ru/

http://www. eurodiesel. com. ua/

http://www. fieldlines. com/

http://www. freeenergyengines. ru/

http://www. freeseller. ru/

http://www. inset. ru/

http://www. manbw. ru/

http://www. mazut. net/

http://www. mdpub. com/

http://www. membrana. ru/

http://www. nek-npo. ru/

http://www. next-tube. com/

http://www. ntpo. com/

http://www. ntpo. com/

http://www. patlah. ru/

http://www. physicsstudy. ru/

http://www. pomreke. ru/

http://www. powerinfo. ruA

http://www. promti. ru/

http://www. renewable. com. ua/

http://www. rosinmn. ru/

http://www. rza. org. ua/

http://www. scitoys. com/

http://www. selsam. com/

http://www. solarhome. ru/ru/

http://www. sun-charge. com/

http://www. swanturbines. co. uk/

http://www. t3000.ru/

http://www. ua. all-biz. info/

http: //www. vampirchik — sun. nm. r u/

http://www. vashdom. ru/

http://www. velacreations. com/

http: // www. watervigorous. com /

http://www. windelectricost. ru/

Знакомимся с геотермальной энергетикой

Достоинства и недостатки

0

Определение.

Геотермальная энергетика— производство электроэнергии, а также тепловой энергии за счет энергии, содержащейся в недрах Земли.

Востребованность геотермальной энергии обусловлена такими факторами:

♦ истощением запасов органического топлива;

♦ зависимостью большинства развитых стран от импорта топлива (в основном импорта нефти и газа);

♦ существенным отрицательным влиянием топливной и ядерной энергетики на среду обитания человека и на дикую природу.

Все же, применяя геотермальную энергию, следует в полной мере учитывать ее достоинства и недостатки.

Источники геотермальной энергии по классификации Междуна­родного энергетического агентства делятся на 5 типов:

♦ месторождения геотермального, сухого пара— сравнительно легко разрабатываются, но довольно редки; тем не менее, поло­вина всех действующих в мире ГеоТЭС использует тепло этих источников;

♦ источники влажного пара (смеси горячей воды и пара) — встре­чаются чаще, но при их освоении приходится решать вопросы предотвращения коррозии оборудования ГеоТЭС и загрязнения окружающей среды (удаление конденсата из-за высокой степени его засоленности);

♦ месторождения геотермальной воды (содержат горячую воду или пар и воду) — представляют собой так называемые геотер­мальные резервуары, которые образуются в результате наполне­ния подземных полостей водой атмосферных осадков, нагревае­мой близко лежащей магмой;

♦ сухие горячие скальные породы, разогретые магмой (на глубине 2 км и более) — их запасы энергии наиболее велики;

♦ магма, представляющая собой нагретые до 1300 °С расплавлен­ные горные породы.

Главным достоинством геотермальной энергии является возмож­ность ее использования в виде геотермальной воды или смеси воды и пара (в зависимости от их температуры):

♦ для нужд горячего водо — и теплоснабжения;

♦ для выработки электроэнергии либо одновременно для всех трех целей.

Кроме того следует отметить:

♦ ее практическую неиссякаемость;

♦ полную независимость от условий окружающей среды, времени суток и года.

Тем самым использование геотермальной энергии (наряду с исполь­зованием других экологически чистых возобновляемых источников энергии) может внести существенный вклад в решение следующих неотложных проблем.

♦ Обеспечение устойчивого тепло — и электроснабжения населения в тех зонах нашей планеты, где централизованное энергоснаб­жение отсутствует или обходится слишком дорого (например, в России на Камчатке, в районах Крайнего Севера и т. п.).

♦ Обеспечение гарантированного минимума энергоснабжения на­селения в зонах неустойчивого централизованного энергоснаб — ■ жения из-за дефицита электроэнергии в энергосистемах, предот­вращение ущерба от аварийных и ограничительных отключений и т. п.

♦ Снижение вредных выбросов от энергоустановок в отдельных регионах со сложной экологической обстановкой.

При этом в вулканических регионах планеты высокотемператур­ное тепло, нагревающее геотермальную воду до значений температур, превышающих 140—150 °С, экономически наиболее выгодно исполь­зовать для выработки электроэнергии.

Подземные геотермальные воды со значениями температур, не пре­вышающими 100 °С, как правило, экономически выгодно использо­вать для нужд теплоснабжения, горячего водоснабжения и для других целей (www. vashdom. ru).

Область применения геотермальной воды при ее температуре, °С:

Н

♦ выработка электроэнергии……………………………………………………… более 140 °С;

♦ системы отопления зданий и сооружений…………………………….. менее 100 °С;

♦ системы горячего водоснабжения…………………………………… 60 °С;

♦ системы геотермального теплоснабжения теплиц.. менее 60 °С;

♦ геотермальные холодильные установки……………….. менее 60 °С.

Подпись: ♦ выработка электроэнергии более 140 °С; ♦ системы отопления зданий и сооружений менее 100 °С; ♦ системы горячего водоснабжения 60 °С; ♦ системы геотермального теплоснабжения теплиц .. менее 60 °С; ♦ геотермальные холодильные установки менее 60 °С.

Примечание.

Значительно повышается эффективность применения термаль­ных вод при их комплексном использовании.

Также получить содержащиеся в термальной воде ценные компо­ненты (йод, бром, литий, цезий, кухонная соль, глауберова соль, бор­ная кислота и многие другие) для их промышленного использования.

Преимуществом геотермальной энергетики является ее практи­чески полная безопасность для окружающей среды. Количество С02, выделяемого при производстве 1 кВт электроэнергии из высокотем­пературных геотермальных источников, составляет от 13 до 380 г (например, для угля он равен 1042 г на 1 кВт/ч).

Недостатки геотермальной энергии:

♦ необходимость обратной закачки отработанной воды в подзем­ный водоносный горизонт.

♦ высокая минерализация термальных вод большинства место­рождений

♦ наличие в воде токсичных соединений и металлов.

image402Внимание.

Эти недостатки, в большинстве случаев, исключает возмож­ность сброса этих вод в расположенные на поверхности природные водные системы.

Отмеченные выше недостатки геотермальной энергии приводят к тому, что для практического использования теплоты геотермальных вод необходимы значительные капитальные затраты:

♦ на бурение скважин;

♦ обратную закачку отработанной геотермальной воды;

♦ на создание коррозийно-стойкого теплотехнического оборудо­вания.

Говоря о недостатках, следует отметить, что тепло Земли очень «рассеянно», и в большинстве районов мира человеком может исполь­зоваться с выгодой только очень небольшая часть энергии. Из них пригодные для использования геотермальные ресурсы составляют около 1% общей теплоемкости верхней 10-километровой толщи зем­ной коры.