Как выбрать гостиницу для кошек
14 декабря, 2021
На самом деле у альтернативной энергетики много проблем. Например, проблема географического распределения энергетических ресурсов.
Ветряные электростанции строятся только в районах, где часто дуют сильные ветра, солнечные — где минимальное количество пасмурных дней, гидроэлектростанции — на крупных реках. Нефть, конечно, тоже есть не везде, но ее доставить проще.
Вторая проблема альтернативной энергетики — нестабильность. На ветряных электростанциях выработка зависит от ветра, который постоянно меняет скорость или вообще затихает. Солнечные электростанции плохо работают в пасмурную погоду и вообще не работают ночью.
Ни ветер, ни Солнце не учитывают нужды потребителей энергии. В тоже время выработка энергии тепло — или атомной электростанции постоянна и легко регулируется. Решить данную проблему может только строительство огромных хранилищ энергии, для создания резерва на случай низкой выработки. Однако это очень сильно удорожает всю систему.
Из-за этих и многих других сложностей замедляется развитие альтернативной энергетики в мире. Сжигать ископаемое топливо по-прежнему проще и дешевле.
Однако если в масштабах мировой экономики альтернативные источники энергии и не дают большой выгоды, то в рамках отдельного дома они могут быть весьма привлекательны. Уже сейчас многие ощущают на себе постоянное увеличение тарифов на электроэнергию, тепло и газ. С каждым годом энергетические компании все глубже залазят в карман обычных людей.
Далее нужно сделать мачту и подшипник, который позволял бы флюгеру легко разворачиваться по’ветру. Замечено, что стальная труба диаметром 1" с минимальным трением вращается внутри стальной ЕМТ трубы РА", используемой при прокладке электропроводки. Тогда в качестве мачты можно использовать длинную трубу РА", а на ее концах водопроводные фитинги 1».
К флюгеру (рис. 1.32), на расстоянии 19 см от генератора, нужно привернуть стальной дюймовый фланец и ввернуть в,
него кусок трубы ДЛИНОЙ 25 СМ.
Этот кусок, вставленный в мачту, мог бы вращаться в ней не хуже, чем в подшипнике. Провода от мотора следует пропустить бы в мачту через отверстие, просверленное в доске флюгера.
ь U-образную конструкцию из водопроводных фитингов, вставив тройник посередине. Тройник свободно вращается, что впоследствии позволит опускать мачту. После этого, через переходник с Ш" на 1", нужно привернуть отрезок трубы длиной 30 см.
Между переходником и тройником желательно вставить еще один 1" тройник, через отверстие которого можно было бы выпустить идущие от флюгера провода. Рекомендуется просверлить отверстия в деревянном круге, чтобы иметь возможность закреплять основание на земле с помощью шпилек.
На рис. 1.34 флюгер и основание показаны вместе. Теперь вы можете представить себе, как будет выглядеть вся конструкция после того, как две части будут соединены трехметровой трубой. Однако постройкой генератора автор Майкл Дэвис занимался во Флориде, а использовать его собирался в Аризоне.
Затем все деревянные детали желательно покрасить в два слоя, например, белой латексной краской. Последний снимок (рис. 1.35) сделан после того, как ветроко — лесо было присоединено к мотору. Сборка генератора закончена.
Гелиоустановка состоит из трех обязательных элементов: вакуумный коллектор, накопительный резервуар и центр управления (рис. 2.5).
Вакуумный коллектор — комплекс вакуумных трубок, преобразующих поток солнечного излучения в тепловую энергию, где осуществляется первичная передача полученного тепла в накопительный резервуар через циркулирующий в системе теплоноситель (незамерзающая жидкость).
Вакуумный коллектор комплектуется 10—30 вакуумными трубками, располагающимися параллельно друг другу. Количество коллек-
Предохранительный Электронагреватель клапан Контроллер Центр управления
торов зависит от потребностей, но обычно достаточно 1—2, в отдельных случаях — 4—6 и более (в зависимости от направления использования тепла и нагрузки).
Элементарной единицей преобразования энергии солнечного излучения в тепло являются вакуумные трубки. Они улавливают наиболее ценное с точки зрения получения тепла излучение, а полученное тепло — передают воде, которая непосредственно используется в быту или теплоносителю, посредством которого осуществляется нагрев воды для горячего водоснабжения или отопления.
Накопительный резервуар — бак заданного объема (как правило, 100—500 л) в котором накапливается теплая вода, полученная от вакуумных коллекторов. Конструктивно выполнен в виде электрического бойлера с одним или двумя внутренними теплообменными спиралями. Функции накопительного резервуара:
♦ накопление горячей воды:
♦ сохранение полученного тепла;
♦ дополнительный подогрев воды (при необходимости).
Примечание.
По умолчанию резервуар комплектуется электронагревателем, но дополнительный подогрев (в случае необходимости) может осуществляться за счет любой системы энергогенерирования (газ, дизель, уголь, дрова и т. д.).
Центр управления (рабочая станция) — комплекс автоматического контроля функционирования вакуумного коллектора и накопительного резервуара, включающий контроллер, датчики температуры и давления, насос и запорные элементы.
Она позволяет полностью автоматизировать процесс и установить наиболее эффективный режим работы системы в течение суток в зависимости от заданных потребителей параметров. Это реализуется при помощи микропроцессорного контроллера обеспечивающего следующие функции:
♦ индикация температуры коллектора, резервуара, обратного потока теплоносителя
♦ выбор температуры активации принудительной циркуляции теплоносителя и дополнительного подогрева;
♦ выбор временных параметров включения-выключения системы отопления и дополнительного подогрева;
♦ выбор температуры режима антизамерзания;
♦ индикация повреждения датчиков.
Принцип работы такого коллектора представлен на рис. 2.6. В основу функционирования солнечного вакуумного коллектора положено четыре базовых процесса:
♦ улавливание солнечного излучения;
♦ теплообмен;
♦ консервация полученного тепла;
♦ автоматизированный контроль системы.
Рис. 2.6. Принцип работы солнечного вакуумного коллектора |
При этом инженерное решение по реализации этих процессов четко распределяется в соответствии с элементами солнечного вакуумного коллектора. Так, солнечное излучение, попадая на коллектор (рис. 2.6), проходит через его вакуумную зону и достигает специального покрытия, которое улавливает те волны солнечного излучения, которые несут наибольшую энергию — в первую очередь инфракрасный спектр.
В результате этого происходит интенсивный разогрев вакуумного коллектора. В зависимости от типа вакуумных трубок коллектора, полученная энергия передается: воде (непосредственно используемой), теплоносителю (вода или антифриз) или металлической пластине. В первом случае полученное тепло непосредственно передается воде для ее нагрева. Во втором и третьем — используется теплоноситель или теплопередатчик.
В качестве теплоносителя может использоваться обычная вода или антифриз (как правило, водный раствор гликоля), а в качестве тепло — передатчика медная трубка или алюминиевая пластина.
Далее теплоноситель или теплопередатчик отдает полученное тепло воде, используемой для бытовых нужд (горячая вода и/или отопление). Обычно, теплоноситель или теплопередатчик пространственно соприкасаются с медной трубкой (спиральной, U-образной или головчатого типа), которая характеризуется повышенным коэффициентом теплообмена.
Именно через медную трубку и осуществляется процесс теплообмена между теплоносителем (теплопередатчиком) и нагреваемой водой. В наиболее простых системах медные трубки отсутствуют, в таком случае процесс теплообмена происходит непосредственно между теплоносителем и нагреваемой водой.
С целью сохранения полученного тепла в солнечном вакуумном коллекторе используются баки-резервуары, имеющие изоляционный слой, который обеспечивает как можно более продолжительное поддержание внутренней температуры.
Для более эффективной координации функционирования наиболее сложные (и одновременно наиболее производительные) солнечные вакуумные коллекторы комплектуются системой автоматического управления.
Эта система управления осуществляется контроль работы всей установки в соответствии с заданными параметрами, включая выбор оптимального режима работы системы в течение суток, при этом контроллер регулирует поток теплоносителя и определяет направление подачи тепла (горячее водоснабжение и/или отопление).
Для бесперебойного функционирования системы солнечного вакуумного коллектора могут комплектоваться дополнительными источниками энергии. Например, традиционный водонагреватель, работающий на электричестве, газе, жидком (дизель) или твердом (уголь) виде топлива. Это обеспечивает наиболее высокую эффективность использования в зимнее время, когда нагрузки наиболее высоки, а также ночное время или облачную погоду, при этом альтернативный источник энергии используется лишь для поддержания заданных параметров.
Н |
Примечание.
Наибольшее количество энергии воспринимается панелью коллектора при расположении его плоскости под прямым углом к направлению на Солнце.
Солнечная электростанция башенного типа
Рис. 3.20. Солнечная электростанция башенного типа |
В солнечных электростанциях башенного типа для преобразования в электроэнергию солнечного света используется вращающееся поле отражателей — гелиостатов. Они фокусируют солнечный свет на центральный приемник, сооруженный на верху башни, который поглощает тепловую энергию и приводит в действие турбогенератор. Каждое зеркало управляется центральным компьютером, который ориентирует его поворот и наклон таким образом, чтобы отраженные солнечные лучи всегда были направлены на приемник (http://howitworks. iknowit. ru/paperl 185.html).
Циркулирующая в приемнике жидкость переносит тепло к тепловому аккумулятору в виде пара. Пар вращает турбину генератора, вырабатывающего электроэнергию, либо непосредственно используется в промышленных процессах. Температуры на приемнике достигают от 538 до 1482 °С (рис. 3.20).
Недостатком любой солнечной станции является падение ее выдаваемой мощности в случае появления облаков на небе, и полное прекращение работы в ночное время. Для решения этой проблемы предложено использования в качестве теплоносителя не воду, а соли с большей теплоемкостью. Расплавленная Солнцем соль концентрируется в хранилище, построенного в виде большого термоса, и может использоваться для превращения воды в пар еще продолжительное время после того, как Солнце скроется за горизонтом.
Благодаря аккумулированию тепла башенные электростанции стали уникальной гелиотехнологией, позволяющей диспетчеризацию электроэнергии при коэффициенте нагрузки до 65%. При такой конструкции расплавленная соль закачивается из «холодного» бака при температуре 288 °С и проходит через приемник, где нагревается до 565 °С, а затем возвращается в «горячий» бак. Теперь горячую соль по мере надобности можно использовать для выработки электриче
ства. В современных моделях таких установок тепло хранится на протяжении 3—13 часов. На рис. 3.21 показана схема работы солнечной электростанции на расплавленных солях.
Теперь, прежде чем выбрать ветряной генератор, посмотрим какие же они бывают.
♦ Карусельные — с вертикальной осью вращения.
♦ Крыльчатые — с горизонтальной осью вращения.
Карусельные ветряные генераторы, конечно, имеют свои преимущества. Они быстро набирают силу тяги при увеличении силы ветра, а затем скорость вращения остается почти неизменной. Установка сама следит «откуда ветер дует», следовательно, ей не нужны никакие дополнительные устройства. Карусельные ветроустановки тихоходны, что позволяет применять простые электросхемы для съема энергии, в частности асинхронные генераторы.
В то же время тихоходность и ограничивает применение карусельных ветрогенераторов, так как вынуждает применять повышающие редукторы — мультипликаторы, имеющие очень низкий КПД. Без мультипликатора такую установку эксплуатировать проблемно; многополюсные тихоходные генераторы мало распространены, во всяком случае, в широкой продаже их нет.
Крыльчатые ветрогенераторы имеют большую скорость вращения. Благодаря этому обстоятельству они могут непосредственно соединяться с генератором, без мультипликаторов
Лопасти крыльчатого ветряного генератора должны располагаться вертикально — перпендикулярно потоку воздуха. Для достижения этого применяется специальное устройство — стабилизатор. У крыль — чатых ветрогенераторов намного выше коэффициент использования энергии ветра. В то же время скорость вращения у них обратно пропорциональна количеству крыльев. Вследствие этого установки с количеством лопастей больше трех практически не используются.
Скорость вращения и простота изготовления обусловили широкое применение крыльчатых ветрогенераторов.
В принцип работы ветроэлектростанции заложена известная еще в давние времена схема с самовращающимся барабаном (подробности см. на http://idea-master. ru/). Устройство представляет собой две половинки полого цилиндра, которые после его разрезки раздвигались в стороны от общей оси. Образовавшееся тело обладает ярко выраженной аэродинамической несимметричностью. Набегающий поперек его оси поток воздуха как бы соскальзывает с выпуклой стороны одного полуцилиндра. Зато другой стороне, обращенной к ветру своеобразным карманом, оказывается значительное сопротивление. Барабан поворачивается, полуцилиндры меняются местами все быстрее и быстрее, и вертушка, таким образом, быстро раскручивалась.
Подобная схема выгодно отличается от ветроэлектростанции с пропеллерной вертушкой. Во-первых, она не требует при изготовлении большой точности и дает широкий выбор применяемых материалов. Во-вторых, она компактна.
Рис. 7.46. Конструкция ветроэлектростанции |
О Примечание.
Мощность генератора, приводимого в действие барабаном диаметром всего около метра, будет такой же, как при использовании трехлопастного пропеллера диаметром 2,5 м!
И если пропеллерную вертушку нужно устанавливать на высокой штанге или на крыше дома (этого требует техника безопасности), то вертушку-барабан можно ставить прямо на земле, под навесом.
Есть у барабана и еще ряд достоинств:
♦ большой крутящий момент при малых оборотах (значит, можно обойтись либо совсем без редуктора, либо использовать простейший одноступенчатый);
♦ отсутствие щеточного токосъемного механизма.
Конструкция ветроэлектростанции представлена на рис. 1.46.
Рассмотренные ранее солнечные водонагреватели-коллекторы из пластиковых бутылок и алюминиевых банок, конечно просты и работоспособны. Однако они имеют один очень существенный недостаток — это именно накопительные водонагреватели. И работают по принципу «залил воду — нагрел — используй». А он хорошо действует только в условиях, когда солнца много. Если вода уже немного нагрета и солнце исчезает в облаках (соответственно прекращается и нагрев), то вода в водонагревателе начинает остывать (отмечает К Тимошенко на http://delaysam. ru/dachastroy/ dachastroy99.html, любезно предоставив этот материал для книги).
Н |
Примечание.
Иными словами, накопительный солнечный водонагреватель плохо работает в условиях переменной облачности.
Однако сделать проточный водонагреватель от солнца с достаточно большой плоскостью облучения (и, соответственно, мощностью) не так просто. Необходимо каким-то образом устроить достаточно большую плоскость, облучаемую солнцем с одной стороны и омываемую водой с другой.
Обычно используют всяческие трубки из достаточно дорогих цветных металлов (медь, алюминий), спаянные в частую решетку и т. п. Такие солнечные коллекторы конечно эффективны, но очень трудоемки в изготовлении и дороги. Это делает бессмысленной саму идею использования солнечного водонагревателя, так как вместо «бесплатного» солнечного тепла мы получаем большие материальные затраты, которые неизвестно когда окупятся.
В процессе обсуждения возможных конструкций солнечного водонагревателя на форуме, у К. Тимошенко родилась идея сделать солнечный коллектор на основе экструдированного пенополистирола (ЭППС). Это очень технологичный материал. Он достаточно прочный, водостойкий, выдерживает довольно высокую температуру, легко обрабатывается, выпускается листами, которые можно состыковать друг с другом, прекрасный теплоизолятор, относительно не дорог.
Немного теории. Проточный водонагреватель отличается от накопительного тем, что в каждый момент времени нагреву подвергается очень маленькая порция воды, находящаяся в солнечном коллекторе. А основная масса воды находится в баке-накопителе, как правило, хорошо утепленном.
В солнечном проточном водонагревателе используется тот эффект, что теплая, нагретая вода немного легче холодной. Поэтому она стремится подняться вверх (в общей массе воды). И если организовать эту циркуляцию, то самая теплая (нагретая) вода будет постепенно скапливаться в термосе (в его верхней части), а общая масса воды в системе повышать свою температуру.
А чтобы организовать такую циркуляцию, необходимо поместить солнечный коллектор ниже бака-термоса, в самом коллекторе сделать ввод более холодной воды внизу, а выход нагретой немного выше. Для нормальной работы и организации циркуляции воды достаточно незначительного перепада высот.
Изготовление солнечного водяного коллектора. Лист ЭППС имеет размер примерно 60×120 см (0,7 м2), что более чем достаточно для эксперимента. Во время облучения солнцем на такую площадь будет падать около 500—600 Вт тепловой энергии (или около 2000 кДж).
Теоретически, этого тепла должно хватать, чтобы нагревать до 60 °С примерно 10 л воды в час (при непрерывном солнечном облучении).
Чтобы превратить лист ЭППС-а в солнечный водонагреватель, в пенополистироле необходимо устроить зигзагообразную канавку для течения воды. А собственно теплоприемником будет выступать лист металла, наклеенный на пенопласт.
В |
Примечание.
Хорошо бы, конечно использовать лист алюминия, но это уже не будет «бюджетно», поэтому можно обойтись листом тонкой оцинкованной стали.
Прежде всего, размечаем лист пенопласта. Для наиболее эффективной работы солнечного коллектора необходимо, чтобы объем воды находящийся в нем был минимальным. Тогда она будет быстро прогреваться, даже если солнце вышло всего на несколько минут, а циркуляция будет быстрой. С другой стороны, площадь контакта воды с металлом коллектора должна быть максимальной. Т. е. перегородки между канавками должны быть как можно уже.
Следует также учитывать, что чем меньше сечение каналов, тем больше будет гидродинамическое сопротивление, которое затрудняет циркуляцию. И наконец, исходя из предполагаемой конструкции солнечного водонагревателя, следует определить, как будут расположены вход и выход в коллекторе. Если с разных сторон, то число каналов должно быть нечетным. А если с одной стороны — то четным.
Решив все эти задачи, можно нарисовать схему расположения каналов на листе ЭППС и прорезать каналы.
■■ Совет.
|jgjl| Для облегчения циркуляции воды в коллекторе, каналы лучше делать с небольшим, 2-3%, наклоном снизу-вверх.
Прорезать каналы в листе пенополистирола лучше всего электрическим резаком. Резак представляет собой небольшой отрезок толстой нихромовой проволоки, изогнутой по форме сечения канала. Можно сделать такой резак из небольшого бруска, прибинтовав липкой лентой по его краям толстые алюминиевые провода. Зажав с одной стороны пассатижами нихромовую проволоку, с другой прикрепите провода идущие к трансформатору.
На торцах листа пенополистирола с помощью герметика вклейте трубки для входа и выхода воды. Затем вырежьте с помощью электролобзика необходимый по размерам лист оцинкованной стали.
Совет.
Использовать ножницы по металлу не рекомендуется, так как они дадут заусенцы на краях.
Смажьте все плоскости листа полистирола герметиком (по периметру и промежутки между каналами) и обезжирьте оцинковку ацетоном, уложите ее на место и прижмите гнетом. Сушить следует пару дней. После этого для проверки герметичности и измерения объема солнечного коллектора залейте его водой. Оцинковку покройте черной матовой краской.
Красок, способных прочно пристать к оцинкованному покрытию не так много. В основном — это акриловые краски. Обычно это т. н. фасадные, светлые краски.
Можно обойтись и обычной грунтовкой. Она пристает к цинку, но не прочно. Однако учитывая, что солнечный коллектор будет эксплуатироваться «под стеклом», такой прочности достаточно.
Рассмотрим конструкцию простой тросовой гирляндной миниГЭС с турбинно-тросовым гидроприводом, который вращается от потока течения реки. Ее предложил академик, д. т.н. Дудышев В. Д. на http:// energyluture. ru/mini-ges-svoimi-rukami. На рис. 4.5 показана, упрощенная конструкция такой минигидроэлектростанции.
В качестве гидроколес (роторов) в тросовом гидроприводе миниГЭС можно использовать несколько «крыльчаток», изготовленных из тонкого металлического листа, диаметром около полуметра, по типу детской игрушки — пропеллера из квадратного листа бумаги. В качестве гибкого вала целесообразно использовать обычный стальной трос диаметром 10—15 мм.
Подшипник Подшипник Рис. 4.5. Минигидроэлектростанция |
Ориентировочные расчеты показывают, что от такой тросовой ГЭС, можно получить с одного гидроколеса до 1,5—2,0 кВт, при течении реки около 2,5 м/с!
Если опоры с подшипниками и электрогенератором установить на дно реки, и подшипники с генератором поднять выше уровня реки, а все это сооружение разместить по оси течения, то результат, практически будет тот же. Эта схема целесообразно применяется для очень «узких речек», но с глубиной более 0,5 м. Тепловую энергию в такой ГЭС можно получить путем подключения электронагревателей к электрогенератору.
Роторы гирляндной ГЭС, как правило, располагаются в ядре потока (на 0,2 глубины от поверхности летом и 0,5 глубины от поверхности льда зимой). Глубина реки в месте установки гирляндной ГЭС не превышает 1,5 м. При глубине реки более 1,5 м вполне возможно использовать роторы, расположенные в два ряда.
Для начала, можно попробовать изготовить каркас (рис. 1.22) из алюминиевой полосы 2×12 мм по розничной цене 25 руб. за два метра. Разрезав на 4 части по 50 см и загнув по шаблону, получим 2 ребра для фиксации полиэтиленовой пленки. Диаметр гирлянды составит примерно 44 см (П. Колосов, http://rosinmn. ru/vetro/girland/girland. htm).
Рис. 1.22. Принцип создания каркаса |
Полиэтиленовая пленка довольно хорошо тянется. Зажав пленку между полосами (свинченные вместе полосы будут хорошо сопротивляться изгибанию), нижнее ребро следует немного закрутить относительно верхнего против часовой стрелки.
■■ Совет.
IIS1II
ИГЛ Чтобы спираль не развернулась обратно, по боковым кромкам пленки так же следует пустить полосы, фиксирующие поворот горизонтальных ребер и обеспечивающие поперечное натяжение полотна.
В качестве дополнительных мер против разгибания гирлянды можно с помощью тонкой проволоки или капронового шнура связать зигзагом края и выступы соседних лопастей.
При вертикальном шаге между ребрами в 50 см на один погонный метр гирлянды уйдет примерно 6,5—7 м полосы или 85 руб.
Каркас для ометаемой площади в 1 м2 (при диаметре 44 см это 2,27 погонных метра) обойдется в 200 руб. Цена обычной 100 мкм пленки 8—9 рублей за м2. Итого: 210—215 руб. при минимальной массе гирлянды.
Конечно, лучше использовать светостабилизированную пленку, устойчивую к ультрафиолету. По заверениям производителей ее срок службы может доходить до двух-трех лет, при стоимости всего на 15—20% дороже. Пусть будет 225 руб. С армированной пленкой, — 240 руб. С алюминиевой 100 мкм фольгой, используемой при теплоизоляции бань, — 270 руб.
Можно также использовать недорогую парусную ткань или любой другой подходящий материал. При всей своей недолговечности полиэтиленовая пленка за счет своей прозрачности имеет изрядное прей — мущество в эстетическом плане, делая гирлянду менее бросающейся в глаза. Да и тени меньше. Фольга, безусловно, претендует на приз зрительских симпатий за футуристический дизайн, — только представьте пляшущие по любимым грядкам солнечные зайчики.
Можно немного упростить конструкцию с полиэтиленом, заменив сдвоенные полосы на одну трубу 1×10 мм (19 руб. за п. м.), и крепя пленку к трубе, например, широким скотчем. В качестве походного варианта подойдет синтетическая ткань с нашитыми поперечными. полосами-карманами для труб-ребер и завязками по краям полотна.
Такую ветроэлектростанцию можно с уверенностью назвать миниэлектростанцией благодаря тому количеству электроэнергии, которое она вырабатывает. Этой энергии достаточно для обслуживания больших домов или нескольких поменьше. Ее используют как для бытовых, так и коммерческих’, промышленных целей: снабжение электричеством магазинов, небольших отелей, ресторанов, производств малых и средних размеров.
Ветроэлектростанция EuroWind 10 — самая популярная модель ветроэлектростанции в нашей стране. Она полностью заменяет общественную электросеть.
♦ производительность генератора, Вт…………………………. 900—13000; ♦ начальная скорость ветра, м/с………………………………………………. 2; |
Характеристики электростанции EuroWind 10:
♦ TOC o "1-5" h z номинальная скорость ветра, м/с………………………………………… 10
♦ полная масса ветроэлектростанции, кг…………………………….. 1548
♦ цена ветроэлектростанции, USD…………………………………….. 12000
♦ месячная выработка энергии (при ср. скор, ветра 6 м/с), кВт. .2200
♦ производительность генератора, Вт……………………… 900—13000
♦ напряжение ветроэлектростанции, В………………………………….. 240
♦ максимальная сила тока, А………………………………………………. 54,2
♦ рекомендуемые аккумуляторы 12 В 200 Ач…………………… 20 шт.
♦ напряжение после инвертора………………………….. 220/380 В 50 Гц
♦ количество лопастей……………………………………………………. 3 шт.
♦ диаметр ротора ветроэлектростанции, м……………………………….. 8
♦ материал лопастей__ FRP (композитный материал — фибергласс)
♦ тип ветроэлектростанции………. PMG (на постоянных магнитах)
♦ защита от ураганного ветра…………… AutoFurl (автоматическая)
♦ высота мачты ветроэлектростанции, м………………………………………………………………………………………………….. 12
♦ контроллер заряда…………………………….. AIC (автоматический)
♦ рабочая температура…………………………………….. от-40 до+60 °С.
На рис. 1.55 показан график мощности ветроэлектростанции в
зависимости от силы ветра.
В комплект ветроэлектростанции EuroWind 10 входит: турбина ветроэлектростанции; лопасти ветроэлектростанции; крепления ветроэлектростанции; тросы мачты; поворотный механизм; контроллер заряда; анемоскоп и датчик ветра.
Скорость ветра(м/с) Рис. 1.55. График мощности ветроэлектростанции в зависимости от силы ветра |