Category Archives: BIOMASS NOW — SUSTAINABLE GROWTH AND USE

Growth of microorganisms

1.1.1. Isolation

Most of classical and clinical microbiology depends on the isolation of a pure culture that consists of only one species. This isolate is then later used for characterization such as species determination or an antibiotic resistance profile. For many applications it is essential to isolate and maintain a pure culture of the organism of interest. The goal is to obtain isolated colonies of the organism of interest. These colonies arise from one single cell and are therefore a clone of that original cell. The original cell is called a colony-forming unit (CFU). To obtain a pure culture, it is crucial to maintain a sterile environmental.

To accomplish the microbiological analysis and isolation of strains, water samples are collected, this should be in sterile plastic containers of 500 mL. Is performed enrichment in nutrient broth, to ensure a favorable conditioning bacteria that may be stressed by environmental conditions and ensure better isolation, for which they are placed 10 mL of sterile nutrient broth sample, duplicate it.

Incubate at 37 ° C for 24 hours and reseed poured plate technique or grooves in the selected specific culture media: nutrient agar for Bacillus sp and Pseudomonas sp; agar EMB (eosin methylene blue) for Enterobacteriaceae; agar M17 for Enterococcus. Also plantings from water samples directly on agar PDA (Potato Dextrose Agar) acidifying the medium with tartaric acid for the isolation of fungi and yeast, and incubated at 22 °C [38].

Different kinds of artemia from the nutritional point of view

From the nutritional point of view, different kinds of artemia are:

— Decapsulated cysts

— Newly hatched nauplii

— Metanauplii and juvenile and adult

— Frozen and freeze — dried artemia

These forms of artemia are commonly used for newly hatched shrimps, sturgeons, trout, aquarium fishes and some crustaceans. Artemia biomass (consist of cysts and different living stages of artemia) is a suitable protein resource for other animals like poultry that consists of different stages of artemia growth.

Continuous Agave Juice Fermentation for Producing Bioethanol

Dulce Maria Diaz-Montano

Additional information is available at the end of the chapter http://dx. doi. org/10.5772/55923

1. Introduction

The production and utilization of fossil fuels introduce several negative environmental impacts. Bioenergy and biobased products are not a panacea for these problems. However, the environmental burden from use of biorenewable resources is generally much less than from the use of fossil resources. Biofuels include fuels derived from biomass conversion, as well as solid biomass, liquid fuels and various biogases. Forest biomass, agricultural residues and energy crops constitute the three major sources of biomass for energy, with the latter developing into probably the most important source in the 21st century. Land use and the changes thereof is a key issue in sustainable bioenergy production as land availability is ultimately a limiting factor [1]. Biodiesel and bioethanol are the main biofuel. Biodiesel can be made from vegetable oils, microalgae, and animal fats; on the other hand, bioethanol is an alcohol made by fermentation, mostly from carbohydrates produced by sugar or starch crops such as corn or sugarcane, as well as from non-food sources such as agricultural residues. Nevertheless, these processes require as an additional step, prior to saccharification, making production a difficult and expensive. Using agave plants as raw material could be a viable alternative to bioethanol production.

Xylose to Xylitol fermentation

Xylose to ethanol conversion in nature is been done by a few organisms such as yeasts like Scheffersomyces stipitis, an ascomycetous yeast that has been extensively investigated for the fermentation of xylose to ethanol, L-lactic acid for its further polymerization into PLA (Poliy Lactic Acid) and other products from hemicellulose, the second abundant component of cellulosic biomass [5, 6, 7]. Laboratory strains of Schef. stipitis, which are amenable to genetic and physiological manipulation, have been developed by metabolic engineering for xylose utilization [5, 7, 8]. The genome sequence was recently obtained for this yeast and will provide a valuable resource for enhancement of xylose utilization and other industrial attributes by Schef. stipites [8]. Genes from Schef. stipitis have also been introduced into Saccharomyces cerevisiae to enable fermentation of pentoses [5, 7, 8].

Bioethanol

(yeasts or bacteria). Bioethanol is a clear colourless liquid, it is biodegradable, low in toxicity and causes little environmental pollution if spilt. In the 1970s, Brazil and the United States (US) started mass production of bioethanol grown from sugarcane and corn respectively. Current interest in bioethanol lies in production derived from lignocellulosic biomass. The most common usage of bioethanol is to power automobiles through mixed with petrol. It can be combined with gasoline in any concentration up to pure ethanol (E100). Anhydrous ethanol, that is, ethanol with at most 1% water, can be blended with gasoline in varying quantities to reduce consumption of petroleum fuels and in attempts reduce air pollution. Bioethanol burns to produce carbon dioxide (CO2) and water. In addition to that, the use of bioethanol is generally CO2 neutral. This is achieved because in the growing phase of the plant sources, CO2 is absorbed by the plant and oxygen is released in the same volume that CO2 is produced in the combustion of the fuel. This creates an obvious advantage over fossil fuels which only emit CO2 as well as other poisonous emissions [1].

Blending bioethanol with gasoline help to reduce green house gases (GHG) emissions by oxygenate the fuel mixture so it burns more completely. On a life cycle basis, ethanol produced from corn results in about a 20 percent reduction in GHG emissions relative to gasoline. With improved efficiency and use of renewable energy, this reduction could be as much as 52 percent. In near future, bioethanol produced from cellulose has the potential to cut life cycle GHG emissions by up to 86 percent relative to gasoline as reported in EPA’s Emission Facts [2].

Ionic liquids fractionation

The ionic liquids (ILs) is a group of promising green solvents for the efficient fractionation of lignocellulosic materials. This technology has been used for delignification of lignocellulosic materials in paper-making [125]. Moreover, by fractionating lignocelluloses with ionic liquids it is possible to extract cellulose cleanly, which establishes a platform for the development of cellulose composites and derivatives.

ILs are liquid salts exist at relatively low temperatures (often at room temperature), which typically composed of large organic cations and small inorganic anions. By adjusting the anion and the alkyl constituents of the cation, ILs’ solvent properties can be varied. The solvent properties include chemical and thermal stability, non-flammability, low vapour pressures and a tendency to remain liquid in a wide range of temperatures [126]. ILs are called "green" solvents, as no toxic or explosive gases are formed.

Most ILs are nonflammable and recyclable solvents with very low volatility and high thermal stability. Carbohydrates and lignin can be simultaneously dissolved in ILs, and the intricate network of non-covalent interactions between biomass polymers of cellulose, hemicellulose, and lignin is effectively disrupted while minimizing formation of degradation products [127-129].

ILs can dissolve large amounts of cellulose at considerable mild conditions and feasibility of recovering nearly 100% of the used ILs to their initial purity makes them attractive [130]. ILs as cellulose solvents, comparing with regular volatile organic solvents of biodegradability, possesses several advantages including low toxicity, broad selection of anion and cation combinations, low hydrophobicity, low viscosity, enhanced electrochemical stability, thermal stability, high reaction rates, low volatility with potentially minimal environmental impact, and non-flammable property.

However, ILs fractionation using ionic liquids faces many challenges in putting these potential applications into industrial scale., for example, the high cost of ILs, regeneration requirement [16]. Their toxicity toward enzymes and microorganisms must also be established before ILs can be considered as a real option for LCF pre-treatment [129].

Other main challenges are the recovery of ionic liquids and the recovery of hemi-cellulose and lignin from the ionic liquids after extraction of cellulose [126].

Willow short-rotation coppice in Quebec

1.1. A brief history

Scientific interest in short-rotation bioenergy willows in Canada dates back to the mid — 1970s’ oil crisis, which stimulated the use of biomass for energy production. The Federal government’s 1978 ENFOR (ENergy from the FORest) program, coordinated by the Canadian Forest Service was part of a federal interdepartmental initiative on energy research and development to promote projects in the forest bioenergy sector. Scientists from the Faculty of Forestry at the University of Toronto pioneered the investigation of willow’s potential for bioenergy in Canada, convinced that willows could produce high annual yields in temperate zones [18-19] Louis Zsuffa’s (1927-2003) work on selection and breeding of poplars and willows through genetic trials on small surfaces inspired the next generation of researchers, including one of his graduate students, Andrew Kenney, who implemented short-rotation intensive culture technology on the first prototype energy plantations in Canada [20]. As well, Gilles Vallee, of the Quebec ministry of Natural Resources, investigated the genetic improvement of hybrid poplar and willow with the aim of developing clones adapted to the shorter growing seasons of boreal forest locations. Our own Institut de recherche en biologie vegetale (Plant Biology Research Institute), located at the Montreal Botanical Garden, grew out of the ENFOR program in the early 1990′. Our research team initially set out to identify willow species and clones well-adapted to short — rotation coppice in southern Quebec (Eastern Canada). Our experiments showed that Quebec’s climate and soil are very favourable for growing various willow clones in short rotation, and that wastewater sludge can be an effective low-cost and environmentally — friendly fertilizer [21]. Researchers from Federal and provincial ministries also initiated diverse willow projects during the 1980s and 1990s, including the genetic improvement of hybrid poplar and willow clones adapted to the short growing seasons of boreal forests [22]. Simultaneously, Natural Resources Canada, a federal ministry, collaborated with several committees, including the International Energy Agency, to improve cooperation and information exchange between countries that have national programs in bioenergy research.

From the early 1990s to the present, dedicated, continuous research on willows in the Canadian context has been concentrated at the Montreal Botanical Garden. As a result of these extensive research efforts, approximately 300 ha of willows have been established on marginal agricultural lands in Quebec over the last 20 years.

Support the immobilization of biomass

Immobilization of cells as biocatalysts is almost as common as enzyme immobilization. Immobilization is the restrict ion of cell mobility within a defined space. Immobilized cell cultures have the following potential advantages over suspension cultures.

• Immobilization provides high cell concentrations.

• Immobilization provides cell reuse and eliminates the costly processes of cell recovery and cell recycle.

• Immobilization eliminates cell washout problems at high dilution rates.

• The combination of high cell concentrations and high flow rates (no washout restrictions) allows high volumetric productivities.

• Immobilization may also provide favorable microenvironmental conditions (i. e., cell­cell contact, nutrient-product gradients, pH gradients) for cells, resulting in better performance of the biocatalyst» (e. g., higher product yields and rates).

• In some cases, immobilization improves genetic stability.

• For some cells, protection against shear damage is important.

The major limitation on immobilization is that the product of interest should be excreted by the cells. A further complication is that immobilization often leads to systems for which diffusional limitations are important. In such cases the control of microenvironmental conditions is difficult, owing to the resulting heterogeneity in the system. With living cells, growth and gas evolution present significant problems in some systems and can lead to significant mechanical disruption of the immobilizing matrix.

The primary advantage of immobilized cells over immobilized enzymes is that immobilized cells can perform multistep, cofactor-requiring, biosynthetic reactions that are not practical using purified enzyme preparations.

Adsorption of cells on inert support surfaces has been widely used for cell immobilization. The major advantage of immobilization by adsorption is direct contact between nutrient and support materials. High cell loadings can be obtained using microporous support materials. However, porous support materials may cause intraparticle pore diffusion limitations at high cell densities, as is also the case with polymer-entrapped cell systems. Also, the control of microenvironmental conditions is a problem with porous support materials. A ratio of pore to cell diameter of 4 to 5 is recommended for the immobilization of cells onto the inner surface of porous support particles. At small pore sizes. Accessibility of the nutrient into inner surfaces of pores may be the limiting factor, whereas at large pore sizes the specific surface area may be the limiting factor. Therefore, there may be an optimal pore size, resulting in the maximum rate of bioconversion.

Adsorption capacity and strength of binding are the two major factors that affect the selection of a suitable support material. Adsorption capacity varies between 2 mg/g (porous silica) and 250 mg/g (wood chips). Porous glass carriers provide adsorption capacities (l08 to 109 cells/g) that are less than or comparable to those of gel-entrapped cell concentrations (109 to 1011 cells/mL). The binding forces between the cell and support surfaces may vary, depending on the surface properties of the support material and the type of cells. Electrostatic forces are dominant when positively charged support surfaces (ion exchange resins, gelatin) are used. Cells also adhere on negatively charged surfaces by covalent binding or H bonding. The adsorption of cells on neutral polymer support surfaces may be mediated by chemical bonding, such as covalent bonding, H bonds, or van der Waals forces. Some specific chelating agents may be used to develop stronger cell-surface interact ions. Among the support materials used for cell adsorption are porous glass, porous silica, alumina, ceramics, gelatin, chitosan, activated carbon, wood chips, polypropylene ion — exchange resins (DEAE-Sephadex, CMC-), and Sepharose [54].

Various reactor configurations can be used for immobilized cell systems. Since the support matrices used for cell immobilization are often mechanically fragile, bioreactors with low hydrodynamic shear, such as packed-column, fluidized-bed, or airlift reactors, are preferred. Mechanically agitated fermenters can be used for some immobilized-cell systems if the support matrix is strong and durable. Any of these reactors can usually be operated in a perfusion mode by passing nutrient solution through a column of immobilized cells [54].

Since the design of reactors for the removal of heavy metals from liquid effluent must consider optimum contact between these and the biomass, it has been considered the use of different types of support for the immobilization of the biomass with the aim of achieving greater efficiency in removing heavy metals. This achieves prevent biosorbent is removed from the reactor in the output current and at the same time is obtained a greater mechanical stability thereby reducing the shear stresses that could damage the structure of the microorganism which affects removal efficiency heavy metals [53].

Living biomass immobilized, must first take the form of biofilm on supports prepared from a variety of inert materials. One of the materials that have been studied as biomass support is activated carbon by porosity and high surface area, besides being an abundant product is obtained as a byproduct of the production of oil from coconut, olive and processing sugarcane [53]. Other materials have been used as biomass support such as silica, polyacrylamide gel and polyurethane include agar, cellulose, alginates, polyacrylamides, the silica gel, sand, textile fibers, calcium alginate, polysulfone, glutaraldehyde and other organic compounds, and have been used for removing heavy metals [55,56].

There are other materials that could be used for biomass carriers; such as the natural zeolites are known important industrial applications due to its high affinity for water and that the cavities only allow passage of molecules of a certain size. Have been used as additives in animal feed, such as soil improvers in agriculture due to increased nitrogen retention and soil moisture, and as catalysts in industrial processes of refining, petrochemicals and fine chemicals [57].

The Pacific

The catch obtained from this region at the maximum yield level, accounts to 62 per cent of world catch, with 54.85M mt (Table 1). The biomass from which this catch was extracted is 109.6 M mt. The current biomass is 89 per cent of the one at the MSY level. In Fig. 3A the catch trend of the Pacific north eastern is displayed; here the maximum yield was recorded by the year 2000, with almost 3 M mt, extracted from a stock biomass of 5.9 M mt; current biomass is unfortunately one Million lower and the trend is declining. In the Pacific north western, a similar trend is displayed (Fig. 3B), the maximum yield was obtained also by the year 2000, with nearly 22.6 M mt corresponding to a biomass of 45.1 M mt. The current

Figure 3. Trend of total catches extracted from several regions of the Pacific Ocean in the period 1950 — 2010. A. Pacific north eastern; in this region the maximum catches were obtained in the late nineties. B. Pacific north western; the maximum yields were obtained around the year 2000. C. Pacific western central; the maximum yield has not been reached and the fisheries seem to be in the eumetric phase. D. Pacific eastern central; the maximum yield seems that will be obtained in the near future. E. Pacific south eastern, the maximum yield was attained in the middle 2000 s, but the catch of the last three years suggests a decline. F. Pacific south western, the trend suggests that the maximum yield has not been reached yet, but the catch has been declining since the last fifteen years.

biomass is 41.8 M mt. The catch of the Pacific western central displays a growing trend with 12 M mt in the last three years (Fig. 3C). To this catch corresponds a stock biomass of 24 M mt; no signs of stabilization of the catch are perceived, which is encouraging. In the Eastern central region, the yield seems to be attaining a maximum with around 2 M mt and a biomass of 4 M mt (Fig. 3D). These values are considered the current ones. The catch of the Pacific western central displays a growing trend with 12 M mt in the last three years (Fig. 3C). To this catch corresponds a stock biomass of 24 M mt; no signs of stabilization of the catch are perceived, which is encouraging. In the Eastern central region, the yield seems to be attaining a maximum with around 2 M mt and a biomass of 4 M mt (Fig. 3D). These values are considered the current ones. The south eastern region displays large variability, and the trend suggests that the maximum was attained a few years before, with a catch of 14.5 M mt corresponding to a biomass of 29 M mt. The mean catch of the last three years indicates a biomass decline to 21.8 M mt. The south western region suggests that the maximum was already attained, but the trend indicates that it will be reached within 15 years or so, with a catch of 800,000 mt and a biomass of 1.6 M mt; the current biomass is only 1.2 M mt.

Sequential Anaerobic-Aerobic Phase Strategy Using Microbial Granular Sludge for Textile Wastewater Treatment

Khalida Muda, Azmi Aris, Mohd Razman Salim and Zaharah Ibrahim

Additional information is available at the end of the chapter http://dx. doi. org/10.5772/54458

1. Introduction

The textile industry involves a long chain of complex activities, from processing raw materials up to finishing the fabrics. These industries have created job opportunities to millions of people and have become one of the major incomes to many countries in the world. Unfortunately, the industry is also one of the major contributors to water pollution. The textile wastewater contains not only the colorant, which is one of the main pollutants, but also other chemicals that are added throughout the textile processing. The dye compounds present in textile wastewater are able to impose a major impact to a receiving water body even in small quantities.

Due to the non-biodegradable nature of textile wastewater, a conventional aerobic biological process is incapable of treating the wastewater. For a complete degradation of textile wastewater, a combination of anaerobic and aerobic reaction phases is necessary.

This chapter briefly reviews the characteristics of textile wastewater and available technologies. This is followed by an in-depth discussion on biogranulation technology and the application of a hybrid biogranular system in treating the textile wastewater.