Category Archives: ИСУ

Как изготовить и смонтировать простой солнечный водонагреватель?

Корпус коллектора можно изготовить из досок или фанеры, а снаружи его можно обшить оцинкованным же­лезом. На дно кладут слой теплоизоляции — минераль­ной ваты — толщиной 50—75 мм, а сверху гипсоволок­нистую плиту с наклеенной алюминиевой фольгой. Затем укладывают абсорбер, предварительно изготовленный и испытанный на плотность. Он может быть составлен из отдельных полосок, представляющих собой трубку для теплоносителя, припаянную к металлическому ребру. Эти трубки присоединены вверху и внизу к гидравличе­ским коллекторам, диаметр которых больше диаметра трубок (10—15 мм) в 2—3 раза. После этого устанавли­вается стекло (толщиной 4 мм) с уплотнением в алюми­ниевом профиле. Переход между стеклом и корпусом за­крывается водонепроницаемой уплотнительной лентой или замазкой.

Изготовленный коллектор устанавливают на металли­ческую ШЛИ деревянную опорную конструкцию и закреп­ляют его на ней. Саму эту опорную конструкцию при­крепляют к строительным деталям крыши или к специ­альному настилу или бетонной плите, располагаемой на плоской крыше дома. Монтаж на плоской крыше намно­го легче, чем встраивание коллектора в наклонную крышу.

Место для размещения солнечного водонагревателя выбирают таким образом, чтобы обеспечивалась его эф­фективная и надежная работа и не возникала опасность для людей и самого здания. Участок крыши, на котором устанавливается солнечный водонагреватель, должен выдерживать дополнительную нагрузку от веса установ­ки. Коллекторы и их опорные конструкции должны быть надежно прикреплены к несущей конструкции, чтобы предотвратить их падение под действием ветра,-снежных буранов и других внешних воздействий. К стропилам, балкам и перекрытию можно прикрепить ^установку с помощью анкерных болтов или проволоки. Для предот­вращения протечек воды через отверстия для трубопро­водов и крепежных деталей следует использовать спе­циальные прокладки, уплотнения или силиконовые по­крытия.

Каковы особенности пуска жидкостного солнечного коллектора?,

При пуске жидкостного коллектора солнечной энер­гии должны соблюдаться определенные правила безо­пасной работы, предотвращающие его повреждение. В солнечный полдень температура лучепоглощающей по­верхности КСЭ, не заполненного теплоносителем, мо­жет достигать температуры 200 °С и более. При поступ­лении холодной жидкости возникает тепловой удар, приводящий к разрушению остекления й образованию трещин и вздутий в канала’іс для теплоносителя. Для предотвращения этих нежелательных явлений заполне­ние коллектора теплоносителем необходимо производить тогда, когда температура лучепоглощающей поверхнос —

ти невелика, т. е. утром или вечером. Это в первую оче­редь относится к КСЭ, в которых предусмотрен дренаж теплоносителя. Аналогичная ситуация возникает при от­ключении насоса по той или иной причине. При наличии системы автоматического управления в ней должен быть предусмотрен датчик максимальной температуры, не допускающий включение насоса при опасно высокой температуре абсорбера. Перед первым пуском смонти­рованной установки производятся ее внешний осмотр, гидравлические испытания давлением 250 кПа, проверку воздушника и полноты слива жидкости при дренаже.

ВЫБОР МАТЕРИАЛОВ ДЛЯ СОЛНЕЧНЫХ УСТАНОВОК

По сравнению с обычными системами теплоснабже­ния солнечные установки требуют более .тщательного проектирования, конструирования элементов, монтажа и эксплуатации. Для обеспечения надежной и эффектив­ной работы солнечных установок в течение всего рас­четного периода необходимо осуществить правильный выбор гелиотехнического оборудования и материалов для его изготовления и произвести качественно работы по установке и монтажу оборудования.

Материалы для изготовления корпуса солнечного кол­лектора. Основными элементами активной гелиосистемы являются коллектор солнечной энергии и аккумулятор теплоты. Для изготовления этих элементов системы ис — пЬЙьзуются различные материалы — металлы, пластмас­сы, стекло, бетон, дерево, полимерная пленка, теплоизо­ляционные материалы, резина. Основным требованием к выбору материалов является требование совместимо­сти конструкционных материалов с рабочими жидкостя­ми при условиях эксплуатации. Особенностью работы солнечных коллекторов является воздействие на них внешней среды. Поэтому корпус коллектора, вмещающий такие конструктивные элементы, как лучепоглощакмцая поверхность с трубами или каналами для теплоносителя, остекление, тепловая изоляция, должен надежно защи­щать их от воздействия внешней среды, предохраняя от попадания влаги, пыли, вредных веществ.

Корпус коллектора может быть изготовлен из оцин­кованного железа, алюминия, стеклоткани, дерева, кау­чука, композиционных материалов и др. Выбор мате­риала осуществляется в соответствии с конструкцией и с учетом наличия материала. Так, для вакуумированщго солнечного коллектора требуются трубы из высококаче­ственного боросиликатного стекла.

Все материалы, используемые для изготовления эле­ментов коллектора, должны выдерживать максимальнее и минимальные рабочие температуры. Внутри корпуса коллектора должно быть предусмотрено свободное про­странство для расширения абсорбера, температура кото­рого может достигать 200 °С и более (при отсутствии теплоносителя).

Материалы для лучепоглощающей поверхности кол­лектора. При выборе конструкционных материалов для изготовления элементов гелиосистем необходимо учиты­вать их совместимость с рабочими жидкостями. При этом для предотвращения коррозии необходимо учитывать следующие рекомендации.

Алюминий нельзя применять в случае прямого контакта с водопроводной водой (pH=5-^9) без ее хи­мической обработки и добавления ингибитора коррозии. Он может применяться при прямом контакте с дистил­лированной или деионизированной водой, содержащей ингибитор коррозии при условии отсутствия контакта с железом или медью, которые, обладая менее положи­тельным электродным потенциалом, образуют, с алюми­нием гальванические пары. Кроме того, алюминий мо­жет работать с безводными органическими жидкостями. Скорость воды и водных растворов в трубопроводах не должна превышать 1,25 м/с.

Медь и ее сплавы можно применять при пря­мом контакте с дистиллированной и деионизированной водой или с водопроводной водой с низким содержанием хлоридов, сульфатов и сульфидов, а также с безводными органическими жидкостями. Медь нельзя применять в следующих случаях:

1) при прямом контакте с водными растворами с вы­соким содержанием сульфида водорода, хлоридов и суль­фатов;

2) при прямом контакте с водой и с водными раство­рами при скорости их движения более 1,25 м/с и при pH до 5.

Сталь рекомендуется применять при прямом кон­такте с дистиллированной и деионизированной водой или с водой, содержащей ингибиторы коррозии (pH=84-12), при низком общем солесодержании. Ее нельзя применять в прямом контакте с необработанной водопроводной во­дой, дистиллированной или деионизированной водой с pH более 12 или pH до 8.

Оцинкованную сталь (железо) следует применять для внутренней обшивки аккумуляторов теп­лоты с катодной защитой и с безводными органическими жидкостями. Ее нельзя применять в прямом контакте с водой и водными растворами, содержащими ионы меди или имеющими pH более 12 или pH до 8, а также при температуре воды выше 55 °С.

Н е р ж а в е ющ а я сталь должна обладать высо­ким сопротивлением к питтинговой коррозии, межкри — сталлнтной коррозии и коррозионному растрескиванию в рабочих средах. Ее можно применять при контакте с безводными органическими жидкостями. Во всех ос­тальных случаях выбор — марки нержавеющей стали дол­жен быть основан на ее совместимости с конкретной жид­кой средой.

Пластмасса, резина, каучук, компози­ционные материалы хорошо совместимы с жид­кими теплоносителями — водой и другими жидкостями. Однако масштабы их применения в гелиотехнике пока невелики.

Материалы должны обладать следующими характе­ристиками:

хорошей устойчивостью к воздействию ультрафиоле­тового излучения и атмосферных факторов — осадков, загрязнений и т. п.;

способностью выдерживать колебания температур от —25 до 150 °С;

достаточной механической прочностью и пожаро­безопасностью.

Недостатки пластмасс: деградируют под действием ультрафиолетового излучения и не выдерживают высо­ких температур, которые могут развиться при отсутствии теплоносителя в коллекторе.

Выпускаемые в СССР плоские коллекторы солнечной энергии имеют низкие оптико-теплотехнические характе­ристики, отличаются большой удельной массой (50— 60 кг/м2 при изготовлении КСЭ из стального штампован­ного радиатора в стальном корпусе и 40 кг/м2 в алюми­ниевом корпусе). Если применять пластмассы, каучук, резину и композиционные материалы, то масса коллекто­ров уменьшится до 5—10 кг/м2. В ФРГ и Франции вы­пускаются КСЭ из синтетического каучука и оребренных пластмассовых труб, выдерживающих как низкие (до —30 °С), так и высокие (до ПО—140 °С) температуры, не портящихся под действием ультрафиолетового излу­чения, имеющих высокую эффективность и низкую стои­мость. Себестоимость 1 кВт-ч производимой в пластмас­совых КСЭ теплоты в 10—12 раз ниже, чем в металли­ческих, и в 4—5 раз ниже, чем при сжигании жидкого топлива или при использовании теплового насоса.

Очевидно, нужно направить усилия на производство новых типов солнечных коллекторов из современных ма­териалов, включая полимерные и композиционные мате­риалы. В низкотемпературных солнечных установках, предназначенных для получения горячей воды в индиви­дуальных жилых домах, дачных поселках и на сельско­хозяйственных объектах, а также для обогрева плава­тельных бассейнов, целесообразно использовать пласт­массовые коллекторы. Некоторые конструкции подобных коллекторов будут описаны ниже.

Материал прозрачной изоляции солнечных коллекто­ров. Прозрачная изоляция предназначена для снижения тепловых потерь КСЭ и предотвращения попадания осадков внутрь него. ^Обычно используется один или два слоя прозрачной изоляции КСЭ, но могут также приме­няться КСЭ без прозрачной изоляции, а иногда и КСЭ с тремя слоями изоляции. Материал прозрачной изоля­ции должен обладать высокой пропускательной способ­ностью для солнечной радиации (длина волн от 0,3 до

2,5 мкм) и быть практически непрозрачным для длинно­волнового (более 3 мкм) теплового излучения, испускае­мого поверхностью абсорбера.

Обычно используется оконное стекло. Лучше всего применять стекло с низким содержанием оксидов желе­за. Стекло должно быть изолировано от металлических поверхностей с помощью резиновой П-образной проклад­ки и уплотнения во избежание его повреждения или об­разования трещин в результате возникновения тепловых напряжений.

Альтернативным материалом прозрачной изоляции является полимерная пленка, обладающая, к сожалению, существенным недостатком, связанным с деградацией под действием ультрафиолетового излучения. Однако,

учитывая ее низкую стоимость, ее все же целесообразно применять. Выше были описаны конструкции гелиосуши­лок с применением полимерной пленки. В последующих разделах будет дана дополнительная информация по при­менению полимерных материалов для изготовления кол­лекторов. Полимерная пленка лучше (по сравнению со стеклом) пропускает солнечное излучение, поэтому при двухслойной прозрачной изоляции можно один слой стек­ла заменять полимерной пленкой. Для повышения срока службы пленки ее необходимо специально обработать с целью повышения стабильности по отношению к воз­действию ультрафиолетового излучения.

Теплоизоляционные материалы для коллекторов. Теп­лоизоляционный материал должен отвечать следующим требованиям. Он должен иметь низкий коэффициент теп­лопроводности Я, низкую плотность р, высокую темпера­туру плавления, высокую сопротивляемость различным вредным воздействиям и влиянию погодных условий. Наилучшими теплоизоляционными материалами являют­ся пенополиуретан и полистирол, могут применяться так­же минеральная вата и стекловата.

Характеристики некоторых наиболее употребительных в конструкциях коллекторов теплоизоляционных мате­риалов приведены в табл. 9.

Таблица 9. Теплоизоляционные материалы

Материал

X, Вт/ (м. К)

Т, °С

р, кг/м*

Полистирол

0,035

80

0,02

Пенополиуретан

0,028

100

0,035

Пенопласт

0,03-0,08

150

0,4—0,7

Поливинилхлорид

0,035

130

0,04—0,08

Полиметакриламид

0,029-0,035

160

0,03—0,2

Минеральная вата

0,038

200

0,145

Стекловолокно

0,036

300

0,12

Уплотнительные материалы и проклад­ки. Для уплотнения стекла в корпусе солнечного кол­лектора лучше всего подходит силиконовая резина. Уп­лотнительные прокладки необходимо помещать с обеих сторон стекла. Для этого прокладка должна иметь П-об — разную форму с зазором для стекла.

Материалы селективных покрытий. В гл. 5 подробно описаны селективные поглощающие по­крытия для лучепоглощающей поверхности солнечного коллектора и способы их получения. Более детальные сведения содержатся в специальной литературе.

Теплоносители для солнечных кол­лекторов (табл. 10). В жидкостных системах горя-

Таблица 10. Свойства теплоносителей для КСЭ (при 20°С)

Показатель

f? o

Я

2? л

8

1

Углеводороды

а

К

О

02

!

j Воздух

ias

а>

ч л к ч

<SS

Проти гликолі (50 %)

ч 5 х <в и Ж

аромати­

ческие’

парафи­

новые

Температура замерзания т 9С

і зам» Vj

0

—36

—33

-60-ь

-ь-Ю

Температура

КИПЕНИЯ Ткап,

°С

100

по

106

180-340

Удельная теп­лоемкость Ср,

кДж/(кг-К)

4,187

1,005

3,3

3,6

1,4—2

1,5-2,1

1,8-2,6

Теплопровод­ность X,

Вт/(м-К)

0,68

0,026

0,43

0,42

0,16

0,13

0,13

Вязкость, V, 10-е м»/с

0,9

16,06

3,4

5

10—

50

9-50

1-60

чего водоснабжения и отопления в качестве теплоноси­теля в солнечном коллекторе используются в основном вода или незамерзающая жидкость — антифриз. В воз­душных системах применяются коллекторы, в которых нагревается воздух. Вода как теплоноситель имеет опре­деленные преимущества и недостатки в сравнении с воз­духом. Вода имеет хорошие теплофизические свойства (теплоемкость, коэффициент теплопроводности, вязкость, плотность), однако при отрицательных температурах на­ружного воздуха она замерзает в трубопроводах и других элементах гелиосистемы. Поэтому необходимо принимать меры по предотвращению ее замерзания. Серьезную про­блему представляет коррозионная активность воды по отношению к большинству конструкционных материалов. Воздух не замерзает и не вызывает коррозии, но его теп-

Подпись:11—675

лофизические свойства значительно уступают воде. Раз­меры воздуховодов и каналов для потока воздуха намно­го больше размеров конструктивных элементов жидкост­ных систем. Кроме того, вентиляторы в воздушных системах потребляют большое количество энергии и соз­дают шум. Воздушный поток должен омывать всю по­верхность абсорбера для обеспечения эффективного теп­лообмена с лучепоглощающей поверхностью.

В жидкостных системах наряду с водой используются также незамерзающие теплоносители — этилен — и про — пиленгликоль и др. Их недостатком является малый срок службы (до 3—5 лет). Пропиленгликоль в отличие от этиленгликоля не токсичен. Токсичность воды зависит от вида применяемого ингибитора коррозии. Углеводород­ные теплоносители мало токсичны. Не следует применять фреоны, поскольку они разрушают озонный слой атмо­сферы Земли.

Свойства некоторых материалов для изготовления гелиосистем, а также селективных поглощающих покры­тий приведены в табл. 11 и 12.

Материалы для аккумуляторов теплоты. Достаточно подробное описание методов аккумулирования теплоты,

Таблица 11. Свойства материалов для гелиосистем

Материал

С, кДж/ (кг-К)

р, кг/м*

К,

Вт/ (м • К)

а

в

Строительные материалы

Бетон

0,834

1920—

0,8—

0,6—

0,88т-

2240

1,73

0,98

0,97

Кирпич

0,921

1920— 2080

0,6—1,3

0,26—

0,89

0,93

Древесина

2,51—

2,93

350—740

0,1—

.0,16

0,6

0,9

Керамическая

плитка

0,8

Металлы

1,7-2,9

0 to

1

о

00

0,6-0,9

Сталь

0,5

7830

45

0,8—0,9

0,85

Железо окислен­ное

Алюминий:

0,5

7 10

55

0,8-

0,94

0,94

полированный

0,88

2740

202

0,1—0,4

0,03

0,09

окисленный

0,88

2740

202

0,4-

0,65

Таблица 12. Характеристика основных селективных поглощающих покрытий

Покрытие

Поглощательная способность в диапазоне солнечного

излучения а_ с

Излучательная способность в диапазоне инфракрасного излучения ет

Степень

селективности

покрытия

Черная краска:

0,95—0,98

0,9-0,97

матовая

1

силиконовая

0,94

0,4

2,35

акриловая

0,92—0,97

0,84-0,9

1,1

Черный хром

0,87—0,93

0,1

9

Черный хром на

0,92—0,94

0,07—0,12

8-13

никеле

Черный никель на

0,93

0,06

15

никеле

Черный цинк

0,9

0,1

9

Оксид меди на алюминии

0,93

0,11

8,5

а также теплоаккумулирующих материалов, применяе­мых в жидкостных и воздушных гелиосистемах горячего водоснабжения и отопления, дано в § 6, а в табл. 4 дана сравнительная характеристика этих материалов; Для во­донагревательных установок и жидкостных систем отоп­ления лучше всего ‘применять воду в качестве теплоак­кумулирующего материала, а для воздушных гелиосис­тем—гальку, гравий ит. и. Однако следует иметь в виду, что галечный аккумулятор при одинаковой энергоем­кости по сравнению с водяным аккумулятором имеет в 3 раза больший объем и занимает в 1,6 раза большую площадь. Например, водяной аккумулятор диаметром

1,5 и высотой 2,4 м имеет объем 4,3 м3, в то время как галечный аккумулятор в форме куба со стороной 2,4 м имеет объем 13,8 м3.

Плотность аккумулирования теплоты в значительной степени зависит от метода аккумулирования и рода ве­щества. Она может быть аккумулирована в химически связанном виде в топливе. При этом плотность аккуму­лирования соответствует теплоте сгорания: нефть — 11,3, уголь (условное топливо) — 8,1, водород — 33,6 и древеси­на— 4,2кВт<ч/кг. При термохимическом аккумулирова­нии теплоты в цеолите (процессы адсорбции — десорб­ции) может аккумулироваться 286Вт-ч/кг теплоты при разности температур 55 °С. Плотность аккумулирования теплоты в твердых материалах (скальная порода, галь­ка, гранит, бетон, кирпич) при разности температур 60 °С составляет 14—17Вт-ч/кг, а в воде — 70Вт-ч/кг. При фазовых переходах вещества (плавление — затвердева­ние) плотность аккумулирования значительно выше: лед (таяние)—93, парафин — 47, гидраты солей неоргани­ческих кислот — 40—130 Вт-ч/кг.

Свойства теплоаккумулирующих веществ приведены в табл. 13 и 14.

Таблица 13. Свойства твердых и жидких теплоаккумулирующих

материалов

Материал

р, кг/ма

С, кДж/ (кг-К)

К.

Вт/ (м • К)

— Теплоакку­мулирующая способность при дг=20 к.

МДж/м*

Вода (давление 0,1 МПа)

1000

4,19

0,6

73,4

Камень (природный)

3100

0,83

52,6

Бетон (с легкими запол-

1000

1,04

0,35

20,9

нителями) "

Железобетон

2200

1,08

1,56

47,5

Кирпич

1700

0,83

0,75

27,4

Древесина

800

1,65

0,21

25

Сталь

7800

0,47

58

73,4

Песок сухой

1500

0,83

0,58

25

Земля сухая

1000—

0,83

0,17-

16,6—50,4

2000

0,58

Г алька

2640

0,86

1,7—4

45,6

Жидкий натрий

960

1,26

67,5

24,2

Эвтектическая смесь

1733

1,55

0,57

53,6

(46% NaN03 + 54 %

КМОз)

Вода (давление 1 МПа)

920

4,32

0,69

79,5

Аккумулирование теплоты может осуществляться также в грунте, в частности, этот способ аккумулирова­ния применяется в теплицах.

В качестве материала для изготовления бака-аккуму­лятора обычно используют сталь или бетон. Бункер для слоя гальки может быть изготовлен из этих же материа­лов. Однако он также может быть изготовлен из толстой фанеры (12 мм) или досок, а каркас при этом делают из стального уголка. Изнутри обшивка должна иметь по­крытие из полимерной пленки для обеспечения герметич­ности. В случае горизонтального расположения галечного

Таблица 14. Свойства теплоаккумулирующих веществ фазового перехода

Вещество

гпл*

р, г/см*

X.

Вт/(м-К)

С, кДж/ (кг-К)

Энта чьпия фазового перехода

кДж/кг

МДж/м»

1

2

3 | 4

5 | 6

7 | 8

9

10

258.1

345.2

403.2

29,2

1,62

1.5

0.6

0.3

1.47

1.47

172,5,

32,4

1,46

1.41

0.6

0,3

1.76

3,31

251

35,2

1.42

0.5

1,55

3.18

279

Неорганические вещества

СаС1,-бН,0

Na. SO.-19H, О Na, HPO( • 12Н. О

44

0.91

0,4

0,2

175,3

54,1

0,87

—.

1,6

2.26

187.8

65

0,88

_

_

1.8

2,73

184.5

70,1

0,95

0,2

1,67

2,3

200,3

Органические кислоты

Лауриновая

Мирнстявовая

Пальмитиновая

Стеариновая

159,5

162,8

162,9

191

22

0.9

0,77

0.3

0,2

2,91

187,8

28

_

0,79

_

0.1

2.1

2,17

244.2

36,7

о,»;

■0.78

0.2

2,01

2,21

247

Парафины

Парафин

Октадекан

н-Эйкозэн

Примечание, Свойства твердой фазы даны в графах 3, 5 н 7, а жид­кой — в гдафах 4, 6 и 8.

аккумулятора сверху на слой гальки необходимо поло­жить полимерную пленку, а на нее насыпать слой песка толщиной около 5 см. Это делается для того, чтобы предотвратить движение воздуха над слоем гальки. Кро­ме того, при большой длине аккумулятора необходимо установить вертикальную перегородку, которая обеспе­чит хорошее омывание частиц гальки потоком воздуха.

Стоимость теплоаккумулирующих материалов изменя­ется от 0,01 для гальки и 0,02. для бетона до 0,57 руб/кг для жидкого натрия. Стоимость воды принимается рав­ной 0.

Каковы основные предпосылки для сооружения солнечного дома?

Применение улучшенной теплоизоляции дома, суще­ственно снижающей потребность в теплоте для отопле­ния, а также правильный выбор местоположения и ори­ентации дома. Дом располагают в таком месте, где с учетом ландшафта солнце светит в течение большей час­ти дня, отсутствуют затенение и сильные ветры, от кото­рых дом может быть защищен с северной стороны, хол­мом, деревьями или кустарниками. Дом своей длинной стороной должен быть обращен на юг, а большая часть окон должна быть размещена в южной стене. Южный скат крыши должен иметь угол наклона к горизонту в пределах 25—60°, чтобы можно было совместить колек — тор с крышей.

ТИПЫ КОЛЛЕКТОРОВ СОЛНЕЧНОЙ ЭНЕРГИИ

Основным конструктивным элементом солнечной ус­тановки является коллектор, в котором происходит улав­ливание солнечной энергии, ее преобразование в теплоту и нагрев воды, воздуха или какого-либо другого теп­лоносителя. Различают два типа солнечных коллекто­ров — плоские и фокусирующие. В плоских коллекторах солнечная энергия поглощается без концентрации, а в фокусирующих — с концентрацией, т. е. с увеличением плотности поступающего потока радиации. Наиболее распространенным типом коллекторов в низкотемпера­турных гелиоустановках является плоский коллектор сол­нечной энергии (КСЭ). Его работа основана на принци­па

image014

пе «горячего ящика», который легко представить себе, если вспомнить, как нагревается на солнце салон закры­того автомобиля, который служит своеобразной ловуш­кой для солнечных лучей, поступающих в него через про­зрачные поверхности остекления. Для того чтобы из­готовить плоский КСЭ, необходима прежде всего луче- поглощающая поверхность, имеющая надежный контакт с рядом труб или каналов для движения нагреваемого теплоносителя. Совокупность плоской лучепоглощающей поверхности и труб (каналов) для теплоносителя обра­зует единый конструктивный элемент — абсорбер. Для лучшего поглощения солнечной энергии верхняя поверх­ность абсорбера должна быть окрашена в черный цвет или должна иметь специальное поглощающее покрытие. Снижение тепловых потерь от абсорбера в окружающее пространство достигается путем применения тепловой изоляции, закрывающей нижнюю поверхность абсорбера, а также светопрозрачной изоляции, размещаемой над аб­сорбером на определенном расстоянии от него. Все на­званные элементы помещаются в корпус, и производится уплотнение прозрачной изоляции — остекления (рис. 8).

image015Рис. 8. Конструктивные эле-
менты плоского коллектора
солнечной энергии:

/ — остекление; і — яучепогяоща-

tom а я поверхность с трубками для ¥ нагреваемой жидкости; 3 — корпус; 4 — теплоизоляция

Таким образом получается плоский коллектор для нагре­ва жидкости, общий вид которого показан на рис. 9. Максимальная температура, до которой можно нагреть теплоноситель в плоском коллекторе, не превышает 100 °С и зависит как от климатических данных, так и от харак­теристик коллектора и условий его эксплуатации. Не­смотря на простоту конструкции создание хорошего кол­лектора требует большого искусства. К числу принципи­альных преимуществ плоского КСЭ по сравнению с коллекторами других типов относится его способность
улавливать как прямую (лучистую), так и рассеянную солнечную энергию и как следствие этого — возможность его стационарной установки без необходимости слежения за Солнцем.

Абсорбер плоского коллектора солнечной энергии, как правило, изготовляется из металла с высокой теплопро­водностью, а именно из стали, алюминия и даже из ме­ди. Для низких рабочих температур его можно также изготовить из пластмассы или резины. Прозрачная изо-

image016Рис. 9. Общий вид плоского коллектора солнечной энергии:

/ — корпус; 2 — теплоизоляция; 3 — лученогловдающая поверхность; 4 — двухслойное остекление; 5 — патрубок для подвода теплоноси­теля {патрубок для отвода нагре­того теплоносителя не показан)

ляция представляет собой один или два слоя стекла или полимерной пленки. Может использоваться комбинация из наружного слоя стекла и внутреннего слоя полимер­ной пленки. В случае низкой температуры нагрева теп­лоносителя (до 30 °С) коллектор может вовсе не иметь прозрачной изоляции. Корпус коллектора может быть изготовлен из оцинкованного железа, алюминия, дерева, пластмассы. В качестве тепловой изоляции могут приме­няться различные материалы: минеральная вата, пено­полиуретан и т. п.

Существуют разнообразные конструкции плоских КСЭ.

Наиболее широко применяемые конструкции абсорбе­ров плоских солнечных коллекторов показаны нарис. 10.

В качестве поглотителя солнечного излучения в коллек­торе типа труба в листе (рис. 10, а) для жидкого теп­лоносителя используется ряд параллельных труб диа­метром 12—15 мм, припаянных или приваренных сверху, снизу или в одной плоскости к металлическому листу и расположенных-на расстоянии 50—150 мм друг от дру-

image017Рис. 10. Схемы абсорберов плос­ких жидкостных коллекторов:

а —труба в листе; б — соединение гофрированного н плоского листов; в — штампованный абсорбер; г — лист с приваренными прямоугольными ка­налами

га. Верхние и нижние’ концы этих tpy6 присоединяются путем пайки или сварки к гидравлическим коллекторам.

image018
image019 Подпись: 7Ш////ЛМЗ г)

В коллекторах для нагрева воздуха (рис. 11) среда движется в пространстве, образованном прозрачной изо­ляцией и лучевоспринимающей поверхностью из метал-

Рис. 11. Схемы плоских воздушных солнечных коллекторов с движе-
нием воздуха под плоским (а), оребренным (б) и гофрированным
(в) абсорбером, через ряд стеклянных пластин (г) и пористую на-
садку (д):

1 — остекление; 2 — абсорбер; 3 — теплоизоляция; 4 — поток воздуха

лического листа плоского (рис. 11, а), с ребрами (рис.
11,6) или гофрированного (рис. 11,в), из стеклянных
пластин, наполовину зачерненных и наполовину про-
зрачных (рис. 11,г), и из пористой насадки (рис. 11,6).

В плоском КСЭ площадь «окна», через которое сол­нечная энергия попадает внутрь коллектора, равна пло­щади лучепоглощающей поверхности, и поэтому плотг

ность потока солнечной радиации не увеличивается. При использовании концентраторов, т. е. оптических устройств типа зеркал или линз, достигается повышение плотности потока солнечной энергии. Это имеет место в фокусиру­ющих коллекторах солнечной энергии, требующих специ­ального механизма для слежения за Солнцем. Зерка­ла — плоские, параболоидные или параболо-цилиндри­ческие — изготовляют из тонкого металлического листа или фольги или других материалов с высокой отража­тельной способностью; линзы — из стекла или пластмасс. Фокусирующие коллекторы обычно применяются там, где

image021

Рис. 12, Концентраторы солнечной энергии:

а — г — параболо-цилиндрический концентратор с трубчатым приемником излуче­ния; б —фоклин; « — параболоидный концентратор; г —линза Френеля; й — поле гелиостатов с центральным приемником излучения; / — отражатель; 2 — приемник излучения

требуются высокие температуры (солнечные электро­станции, печи, кухни и т. п.). В системах теплоснабжения зданий они, как правило, не используются. Некоторые типы концентраторов, используемых в фокусирующих коллекторах, показаны на рис. 12. Плоские КСЭ также могут быть снабжены дешевыми плоскими отражате­лями.

Кроме описанных двух основных типов КСЭ — плос­ких и фокусирующих коллекторов — разработаны и ис­пользуются стеклянные трубчатые вакуумированные коллекторы, солнечные пруды, представляющие собой комбинацию КСЭ и аккумулятора теплоты, и т. п.

Сравнительная характеристика коллекторов различ­ных типов дана в табл. 2.

Таблица 2. Характеристика основных типов солнечных коллекторов

Тип солнечного коллектора

Рабочая температу­ра. °С

КПД коллек­тора. %

Относи­

тельная

требуемая

площадь.

%

, Слежение за Солнцем

Плоский КСЭ

30-100

30-50

100

Не требуется

Солнечный пруд

40—100

15-25

130

Не требуется

Центральный при­емник с полем ге­лиостатов

до 1000

60-75

20—40

Вращение во­круг двух осей

Параболо-цилин­дрический концен­тратор

до 500

50-70

30—50

Вращение во­круг одной оси

Вакуумированный стеклянный труб­чатый коллектор

90—300

40-60

50—75

Не требуется

5. ЭФФЕКТИВНОСТЬ СОЛНЕЧНЫХ КОЛЛЕКТОРОВ И МЕТОДЫ ЕЕ

ПОВЫШЕНИЯ

Показателем эффективности КСЭ является его ко­эффициент полезного действия, равный отношению теи- лопроизводительиости коллектора к количеству солнеч­ной энергии, поступающему на коллектор:

Як — ЯЖВшА),

где Qk — тенлопронзводнтельность коллектора, Вт-ч; Ек — количество солнечней энергии, поступающей на 1 м2 площади поверхности КСЭ, Вт-ч/м2; А — площадь поверхности абсорбера КСЭ, м2.

Величину QK можно определить по расходу теплоно­сителя т, кг/с, его удельной теплоемкости Ср, Вт*ч/ /(кг-°С), и разности температур теплоносителя на вы­ходе Т2 и входе Т КСЭ, т. е. Qt:=tnCp(T2—rt).

Коэффициент полезного действия коллектора солнеч­ной энергии определяется его эффективным оптическим

Зб

КПД tjo и эффективным коэффициентом теплопотерь Кк — Т1« “ Т1о Як (Пі ТвУІщ

где /к — интенсивность потока солнечной энергии, посту­пающего на поверхность КСЭ, Вт/м2; Кк — эффектив­ный коэффициент теплопотерь КСЭ, Вт/(м2-°С); Тв — температура наружного воздуха, °С.

Приведенная выше формула дает мгновенное значе­ние КПД КСЭ, которое может быть принято средним для данного часа суток. Но поскольку интенсивность пото­ка солнечной энергии /к в течение дня изменяется от ну­ля перед восходом и после захода Солнца до максимума в солнечный полдень, также сильно изменяется и КПД КСЭ.

Отсюда следует, что среднедневное значение КПД будет значительно ниже, чем его максимальное значение в полдень.

Возникает вопрос — от чего зависит величина КПД коллектора солнечной энергии? Наиболее сильное влия­ние на КПД плоского КСЭ оказывают: 1) метеорологи­ческие параметры — интенсивность солнечной энергии /, измеряемая на горизонтальной поверхности, и темпе­ратура наружного воздуха Тл; 2) конструктивные ха­рактеристики КСЭ и свойства лучепоглощающей поверх­ности абсорбера — материал и толщина листа, толщина и коэффициент теплопроводности тепловой изоляции, шаг труб, число слоев остекления и его пропускательная способность; 3) рабочие параметрі* КСЭ — расход теп­лоносителя и его температура на входе в КСЭ.

При сравнении различных материалов, используемых для изготовления абсорбера, — меди, алюминия, стали, пластмассы — установлено, что с увеличением произве­дения толщины листа б на его коэффициент теплопровод­ности А, значение КПД коллектора возрастает. Так, при толщине лучепоглощающего листа в 1 мм из меди, алю­миния, стали или пластмассы [А,=390; 205; 45 и 0,6 Вт/(м-°С) соответственно] КПД КСЭ составляет 52; 50; 48 и 22 %.

В табл. 3 приведены значения коэффициента эффективности оребрения металлического листа лучевоспринимающей поверхности плоского КСЭ в зависимости от материала ребра, его толщины и ша­га трубок для теплоносителя (обычно в пределах 50—150 мм).

Теплотехническое качество лучевоспринимающей поверхности коллектора возрастает при использовании более теплопроводного материала, при увеличении его толщины (хотя влияние здесь иеве-

image022

Таблица 3. Коэффициент эффективности оребрения F’ абсорбера плоского жидкостного коллектора (толщина листа I мм, диаметр труб 25 мм)

Материал

листа

X, Вт/(м — °С)

Шаг труб, мм

50

100

150

Медь

390

0,989

0,972

0,948

Алюминий

205

0,988

0,967

0,934

Сталь

45

0,984

0,925

0,819

лико) и уменьшении шага трубок. Уменьшение диаметра трубок с 25 до 12 мм влечет за собой снижение коэффициента эффективности на 0,03—0,05, но при этом уменьшается общая теплоемкость коллектора и его тепловая инерция, а следовательно, быстрее происходит его прогрев. Зазор между лучевоспринимающей поверхностью и остек­лением и между внутренним и наружным слоями двухрядного остек­ления обычно выбирают в пределах 15—25 мм. Толщина тепловой изоляции нижней поверхности абсорбера принимается равной 50— 75 мм, а боковых поверхностей — 25 мм.

При возрастании интенсивности инсоляции с 300 до 1000 Вт/м2 КПД коллектора увеличивается с 32 до 59 %, а при увеличении температуры наружного воздуха’с 10 до 30 °С КПД возрастает с 41 до 55 %.

Очевидно, что в холодный период года КПД обычного плоского КСЭ весьма низок.

Большое влияние на КПД КСЭ оказывает темпера­тура теплоносителя на входе в колектор: чем она ниже, тем ниже тепловые потери КСЭ и выше его КПД. При увеличении расхода теплоносителя КПД КСЭ возраста­ет до определенного предела, а затем остается постоян­ным, так что существует оптимальный диапазон значений расхода теплоносителя. КПД КСЭ сильно увеличи­вается при применении абсорбера с селективным покры­тием, характеризуемым большим отношением поглоща­тельной ас и излучательной ет способностей. При одно­слойном остеклении изменение степени селективности абсорбера ас/ет с 1 до 12 приводит к увеличению КПД КСЭ с 45 до 60%.

При испытании коллекторов получают зависимость КПД коллектора т)к от отношения у разности температур теплоносителя на входе в КСЭ и наружного воздуха ДТ к плотности потока солнечной энергии /к на поверхность КСЭ. Типичные характеристики плоских и вакуумиро — ванного коллекторов и области их применения показаны на рис. 13. Как видим, характеристика КСЭ изображает­ся прямой линией. Точка ее пересечения с вертикальной осью соответствует эффективному оптическому КПД 1|э при угле падения солнечных лучей 0°, а тангенс угла на­клона прямой к горизонтальной оси — эффективному коэффициенту теплопотерь КСЭ Кк■

image023

Рис. 13. Характеристика коллекторов солнечной энергии:

1 — коллектор без остекления; 2 — коллектор с однослойным остеклением; 5 —
коллектор с двухслойным остеклением; 4 — селективный плоский коллектор с
однослойным остеклением; 5 — стеклянный трубчатой вакуумированный кол-
лектор

Характеристика солнечного коллектора описывается следующей формулой: т)к=,По—КкУ■ При этом оптиче­ский КПД т)0 и коэффициент теплопотерь Кк для кол­лекторов, характеристики которых представлены на рис. 13, равны:

Чо

Вт/(м* • °С)

15

7

5

3,5

2

Неселективный плоский коллектор без остекления 0,95 То же с однослойным остеклением, , , , , о,85 То же с двухслойным остеклением, , . , . 0,75 Селективный плоский коллектор с однослойным

остеклением……………………………………………………. і 0,’8

Вакуум’ированный стеклянный трубчатый коллек­тор, * я, і S, 4 sі Ї I I t I I J 0,75

Оптический КПД определяется произведением коэф­фициента пропускания солнечного излучения прозрачной изоляцией х (для 1—3-слойного остекления T=0,6-w-0,95). и коэффициента его поглощения абсорбером а (а= — 0,85-:-0,98) и не зависит от /к и разности температур ДТ коллектора Тк и наружного воздуха Тв. Тепловые по­тери снижают полезную энергию коллектора и возраста­ет с увеличением разности температур A7Y Диапазон типичных значений коэффициента теплопотерь Кк— = 1,2-*-10 Вт/(м2-°С).

. Из рис. 13 видно, что при «/=Д7’//К<0,013 м2-°С/Вт плоский коллектор без остекления имеет наибЬльший КПД, в Диапазоне значений у до 0,045 м2 -°С/Вт коллек­тор с однослойным остеклением более эффективен, чем коллектор с двумя слоями стекла, при у>0,025 м2-°С/Вт самым эффективным является вакуумированный коллек­тор. Для плавательных бассейнов, работающих летом при высоких значениях температуры воздуха Тв и интенсив­ности сюлнечного излучешш в плоскости коллектора /к’, у мело из-за Малой разности температур ДГ, и наиболее целесообразно использовать дешевые плоские коллекто — рьі без остекления (в-частности, пластмассовые) . Об­ласть (у<0,03 м2-°С/Вт) соответствует применению

солнечных коллекторов для обогрева плавательных бас­сейнов, J5 (у=0,03-г-0,08 м2-°С/Вт) — для горячего во­доснабжения и В (р>0,08 м2-°С/Вт) — для отопления.

Для горячего водоснабжения требуетсд разность тем­ператур Д7’=20-=-50°С, и чтобы при средней и невысо­кой интенсивности солнечного излучения, скажем, 300— 500 Вт/м2, давать полезную энергию, требуются неселек­тивные коллекторы с одним-двумя’ слоями остекления или селективный коллектор С ОДНОСЛОЙНЫМ остеклением. Применение двух слоев остекленйН сиижает тепловые потери, но одновременно, увеличивает оптические поте­ри. Для отопления зданий требуется большая разность

температур АТ, которую могут обеспечить только высо­коэффективные коллекторы, например вакуумирован — ные или плоские с селективным абсорбером.

Объем промышленного производства солнечного обо­рудования в СССР явно не отвечает современным тре­бованиям. В частности, солнечные коллекторы выпуска­ются на Братском заводе отопительного оборудования. Там производится плоский коллектор для нагрева жид­кости, представляющий собой плоскую лучепоглощаю — щук» стальную панель с каналами для воды, помещенную в корпус с однослойным остеклением и тепловой изо­ляцией тыльной стороны абсорбера (рис. 14,а). Габа­риты выпускаемого модуля КСЭ 1530 x 630×98 мм, пло­щадь лучепоглощающей поверхности абсорбера 0,6 м2. масса 50,5 кг (в стальном корпусе), стоимость 37 руб. Другими организациями — ПО «Спецгелиотепломон — таж» в г. Тбилиси, опытными производствами институ­тов КиевЗНИИЭП и ФТИ АН УзССР в г. Ташкенте:— в небольших количествах выпускаются КСЭ аналогич­ного типа (рис. 14, б и в) с использованием стальных па-, нельных радиаторов типов РГС — или ЗС, имеющих площадь лучепоглощающей поверхности 0,62—0,72 м2, массу от 32 до 36 кг (в алюминиевом корпусе) и стои­мость 46—50 руб. за модуль. Абсорбер покрыт черной краской марок ПФ, НЦ, КО, ХВ или ВТ с добавлением сЯжи. Коллектор имеет одно — или двухслойное остекле­ние и тепловую изоляцию. Коэффициент теплопотерь при однослойном остеклении — около 10 Вт/(м2’°С). Объем производства КСЭ на Братском заводе 100 тыс. м2 КСЭ в /од. Планируется довести производство до 1 млн. м2.в год и улучшить оптико-теплотехнические ха­рактеристики КСЭ, снизив коэффициент теплопотерь до 2,3 Вт/(м2-°С).

За рубежом во многих странах организовано массовое промыш­ленное производство коллекторов солнечной энергии. Первое место в мире по количеству установленных КСЭ- занимают США, где об­щая площадь коллекторов составляет (по данным 1988 г.) 10млн. м*, второе место — Япония (8 млн. м2 КСЭ), далее следуют: Израиль — 1,75 млн. м2, Австралия — 1,2 млн. м*. На одного жителя приходится в Израиле 0,45, в Австралии—0,08, в США, Греции и Швейцарии — 0,06 м* площади КСЭ.

Повышение тепловой эффективности солнечных кол­лекторов может быть достигнуто путем применения: кон­центраторов солнечного излучения; селективно-поглоща-

А

-*1

image024

ющего покрытия абсорбера; вакуумирования пространст­ва внутри коллектора; нескольких слоев прозрачной изо­ляции; сотовой ячеистой структуры в пространстве между абсорбером и остеклением и антиотражательных покры­тий на остеклении.

В результате применения указанных методов снижа­ются тепловые потери коллектора и повышается его КПД.

Селективные поверхности для КСЭ. Наиболее эффек­тивный способ повышения КПД плоских коллекторов солнечной энергии связан с применением селективно — погловдающих покрытий. Второй способ состоит в изме­нении оптических свойств прозрачной изоляции с целью увеличения ее отражательной способности рт по отно­шению к тепловому излучению абсорбера и пропуска — тельной способности тс для солнечного излучения.

Селективные покрытия для лучепоглощающей по­верхности солнечного коллектора должны обладать вы­соким коэффициентом поглощения etc коротковолнового солнечного излучения (короче 2 мкм), низкой излуча­тельной способностью ет в инфракрасной области (длин­нее 2 мкм), стабильной величиной степени селективнос­ти ссс/єт, способностью выдерживать кратковременный перегрев. поверхности, хорошей коррозионной стойкос­тью, быть совместимыми с материалом основы и иметь низкую стоимость. Для идеальной селективно-поглоща — щающей поверхности ас=1 и ет=0, а для идеальной прозрачной изоляции тс= 1 и рт=1.

Увеличение осс влияет на эффективность КСЭ в боль­шей степени, чем аналогичное умейьшение ет. Однако получить высокое значение ас нелегко. Для черной крас­ки осс не превышает 0,95, такое же значение имеет и ет. Селективные покрытия, как правило, представляют со­бой тонкопленочные фильтры, и при увеличении etc за счет утолщения пленок одновременно возрастает ет. Са­мый распространенный тип селективных покрытий — это тонкие пленки на металлической основе, поглощаю­щие видимый свет и пропускающие инфракрасное излу­чение (ИК). Сюда, в частности, относятся покрытия из черного никеля и черного хрома, наносимые электро­химическим способом на подложку из никеля, цинка, олова или меди. Применяются и другие способы нанесе­ния покрытий этого типа. Селективные краски получают из прозрачных в ИК-области полупроводников в виде мелкого порошка с большой порозностью для снижения эффективного коэффициента отражения поверхности.

Покрытие черным хромом наиболее перспективно для получения требуемых оптических свойств и высокой термической стабильности при температурах до 400 °С (в вакууме). Но плотность электрического тока при на­несении черного хрома почти в 100 раз выше, чем для черного никеля, отсюда и высокая стоимость селектив —

в зависимости от длины волны Я излучения

Подпись: ных поверхностей с черным хромом. В качестве подложки для черного никеля и черного хрома используются ' полированные металлы. На рис. 15 показано изменение отражательной способности р покрытия черным хромом

Наилучшие результаты получены с черным хромом на алюминиевой фольге (ас=0,964 и ет=0,023) и с черным никелем на блестящей никелевой подложке (ас—0,96 и Єт=0,11).

image026Рис. 15. Зависимость коэффи­циента отражения от длины волны для селективной погло­щающей поверхности из черно­го хрома

В настоящее, время достигнуты значения степени се — лективности. т. е. ас/e*—*10-г20. При степени селектив­ности 20—40 равновесная температура лучепоглощаю — щей поверхности коллектора (без ее охлаждения тепло­носителем) достигает 350—600 °С. На остекление может быть нанесейб антиотражательное покрытие из диоксида индия. На полированную поверхность металлического листа, обладающую высокой отражательной способнос­тью й, следовательно, низким значением ет, можно нане­сти слой сажи,, при .этом коэффициент поглощения ас солнечного излучения возрастет до 0,96.

Способы получения селективных поглощающих покрытий. Наи­более простой способ получения селективной поверхности — это хи­мическое окисление меди, используемой в качестве подложки на других металлах, при этом получается поглощающий слой окиси меди! Рассмотрим способы нанесения покрытий из черного никеля в черного хрома на сталь с подложкой из блестящего никеля, кото­рый можно нанести в электролитической ванне,, содержащей 180 г/л №S0t-6H20, 40 г/л борной кислоты и 40 г/л NiCla при температуре — 50°С, рН=4 и силе тока 3,5—4,5 А/дма. Черный никель наносят вванне, содержащей 65 г/л NiS04*6Hj0, 20г/л. ZnSOi^HjO, 30г/л (NH4)2S04 и 11 г/л NHtCNS при температуре 25—30°С и плотности тока 0,05—2 А/дм2. Покрытие из черного хрома представляет собой пленку, состоящую из мельчайших частиц металлического хрома в изолирующей решетке СггОз — Дри обычном способе нанесения это­го покрытия требуется высокая плотность электрического тока (75—150 А/дм2) при температуре 10—15 °С, т. е. с охлаждением.

Разрабатывается способ нанесення, осуществляемый при 20—60 "С и плртностн тока 7,5 А/дмг. Состав ванны для нанесения черного хрома на мягкую сталь: Сг20з — 300 г/л,_ВаСОз — в количестве, до­статочном для удаления всех ионов NO4, сахароза — 3 г/я, фторси — ликат — 0,5 г/л; температура 12—15 °С, плотность тока 32—36 А/дм*.

Способы нанесения пок-рытий постоянно совершенствуются.

Для плоских солнечных коллекторов лучше всего подходят се­лективные черные поглощающие краски.

Солнечные коллекторы с тепловыми трубами. В по­следние годы разработаны конструкции КСЭ с исполь­зованием тепловых труб. Как известно, тепловая труба представляет собой вакуумироваиное герметичное уст­ройство в виде трубы или плоского канала с продольны­ми канавками или капиллярно-пористым телом—фитилем на внутренней поверхности канала, частично запол­ненного рабочей жидкостью. При подводе тепдоты жид­кость в одной части тепловой трубы — в испарительной зоне—испаряется и образующиеся пары переносятся в зону отвода теплоты (в зону конденсации), где они кон­денсируются, и по капиллярной структуре жидкость воз­вращается в зону испарения. г

Подпись: Рис. 16. Конструкция солнечного коллектора с плоской тепловой / — остекление: 2 — теплова* труба (испарительная зона); 3 — конденсационная зона; 4— труба для отвода теплоты: 5 —теплоизоляция; 6 — корпус

Возможен широкий выбор рабочих жидкостей, в ча­стности могут использоваться дистиллированная вода,

трубой:

ацетон и хладагенты при низких температурах. В тепло­вой трубе без фитиля, называемой термосифоном, воз­врат конденсата в- зону испарения происходит под дей­ствием силы тяжести, поэтому тепловая труба этого ти­па может работать лишь при условии расположения зоны конденсации выше зоны испарения. Для К. СЭ с теп­ловой трубой характерны: высокая плотность потока пе­редаваемой теплоты и большая компактность устройст­ва, передача теплоты в одном направлении—из зоны испарения в зону конденсации, отсутствие расхода энер­гии на перенос среды, передача теплоты при малой раз­ности температур, саморегулируемость. Поскольку в низ­котемпературных гелиотермических установках исполь­зуются в основном плоские КСЭ, в них целесообразно использовать плоские тепловые трубы — термосифоны. Выбрав должным образом заполнитель, можно полнос­тью исключить проблемы, связанные с коррозией и за­мерзанием системы. На рис. 16 показан пример конструк­тивного выполнения КСЭ с тепловой трубой. Масса КСЭ 25 кг на 1 м2 площади поверхности.

Вакуумированные стеклянные трубчатые коллекторы. Известно, что поддержание вакуума ниже 1,33 Па в про­странстве между лучепоглощающей поверхностью абсор­бера и прозрачной оболочкой наряду с одновременным применением селективных покрытий на поверхности аб­сорбера существенно повышает эффективность КСЭ бла­годаря почти полному исключению тепловых потерь пу­тем теплопроводности и конвекции, с одной стороны, а также повышению поглощательной способности и сни­жению потерь теплоты путем излучения, с другой.

Возможны различные варианты конструктивного выполнения вакуумированных стеклянных трубчатых коллекторов (ВСТК). Некоторые из них показаны на рис. 17 (в разрезе) и 18. Внутри стеклянной оболочки 1 из высококачественного боросиликатного стекла диа­метром 100—150 мм помещаются трубка для теплоноси­теля, лучепоглощающая поверхность, отражатель. Трубка может иметь U-образную форму (а и в) или представ­ляет собой тепловую трубу (б и а). Внутреннее простран­ство оболочки вакуумировано. Отражатель может быть выполнен в виде фоклина (в), может составлять часть оболочки (г) или находиться в виде полос на боковых стенках вакуумированных труб, используемых в качест­ве прозрачной изоляции (д). В конструкции, показанной

на рис. 17, д, лучепоглощающая поверхность расположе­на под вакуумированными трубами и надежно соедине­на с трубками для нагреваемой жидкости, помещенными в теплоизоляцию. Обычно модуль коллектора включает ряд (до 10) стеклянных вакуумированных труб, присое­диненных к общей трубе, по которой движется нагревав* N мая жидкость. Как правило, модуль помещается в теп­лоизолированный корпус. В конструктивном отношении слабым местом является узел соединения стеклянных и металлических деталей, имеющих различные коэффи­циенты линейного расширения при нагревании.

Итак, для повышения эффективности вакуумирован — ных коллекторов используются селективные покрытия, отражатели и т. д. На внутреннюю поверхность верхней части стеклянной оболочки наносят покрытие, например из диоксида индия, обладающее хорошей отражательной способностью для теплового (инфракрасного) излучения и не влияющее на коэффициент пропускания коротковол­нового солнечного излучения. На дучепоглощающую по­верхность абсорбера наносят селективное покрытие

image028

image029

Рисі 17. Поперечное сечение вакуумированных стеклянных трубча­тых коллекторов:

I—стеклянная оболочка; 2 — трубка для нагреваемой жидкости; 3 —лучепо­глощающая поверхность; 4 — отражатель; 5 — теплоизоляция

с большой величиной отношения ас/єт, например из чер­ного хрома, благодаря чему снижаются оптические по­тери КСЭ и потери теплоты путем излучения и повыша­ется КПД. Нижняя поверхность стеклянной оболочки может быть выполнена зеркальной. Отражающая поверх­ность может быть размещена под стеклянной оболочкой На небольшом расстоянии от нее. Это способствует повы­шению КПД солнечного коллектора благодаря исполь­зованию рассеянного излучения.

image030

Рис. 18. Общий вид вакуумированвого стеклянного трубчатого кол­лектора:

/ — вакуумировавнля стеклянная оболочка; 2 — труба для нагреваемой жид-
кости; 3 —соединение металла со стеклом

В качестве теплоносителя используются различные среды, в частности вода, растворы органических ве­ществ, силиконовое масло. Температура нагрева тепло­носителя достигает 90—300 °С.

Коллекторы с прозрачной сотовой ячеистой структу­рой. В обычных плоских КСЭ практически невозможно получить температуру, превышающую температуру на­ружного воздуха более чем на 100 °С, из-за высоких по­терь теплоты при повышенных температурах. Одним из эффективных методов снижения потерь теплоты в КСЭ является применение прозрачной сотовой структуры, располагаемой между остеклением и лучевоспринима — ющей поверхностью абсорбера и обеспечивающей подав­ление конвективного и частично лучистого теплообмена. По Своей конструкции структура напоминает пчелиные соты и состоит из продолговатых ячеек круглого, пря-

моугольного или шестиугольного сечения, изготовленных из стекла или пластмассы.

В КСЭ с прозрачной ячеистой структурой, предназна­ченной для подавления конвекции воздуха, можно на­греть теплоноситель до 250 °С. Материал для ячеек должен иметь небольшую толщину (0,5 мм), низкий коэф­фициент теплопроводности и низкую удельную теплоем­кость. Диаметр ячеек не должен превышать 5 мм, а от­ношение их высоты к диаметру должно быть в пределах 5—15. Кроме того, материал ячеек должен выдерживать достаточно высокие рабочие температуры.

АККУМУЛЯТОРЫ ТЕПЛОТЫ

Необходимость аккумулирования теплоты в гелиоси­стемах обусловлена несоответствием во времени и по ко­личественным показателям поступления солнечной ради­ации и тецлопотребления. Поток солнечной энергии изме­няется в течение суток от нуля в ночное время до максимального значения в солнечный полдень (рис. 19, а).

image031

Рис. 19. Годовой (а) и суточный (б) ход поступления солнечной энергии (Е) и тепловой нагрузки (Q), отопления и горячего водо­снабжения

Поскольку тепловая нагрузка отопления максимальна в декабре — январе, а поступление солнечной энергии в этот период минимально (рис. 19, а), для обеспечения теплопотребления (Q) необходимо улавливать солнеч­ной энергии (Е) больше, чем требуется в данный момент (Ei), а ее избыток (Е2) накапливать в аккумуляторе теплоты. Запас энергии в аккумуляторе может быть рас­считан на несколько часов или суток при краткосрочном аккумулировании и на несколько месяцев — при сезонном аккумулировании. Следует отметить, что применение се­зонных аккумуляторов пока экономически нецелесооб­разно. В целом же применение аккумулятора теплоты повышает эффективность гелиосистемы и надежность теплоснабжения.

Низкотемпературные системы аккумулирования теп­лоты охватывают диапазон температур от 30 до 100 °С и используются в системах воздушного (30 °С) и водя­ного (30—90 °С) отопления и горячего водоснабжения (45—60°С). Система аккумулирования теплоты, как правило, содержит резервуар, теплоаккумулирующий материал, с помощью которого осуществляется накопле­ние и хранение тепловой энергии, теплообменные устрой­ства для подвода и отвода теплоты при зарядке и раз­рядке аккумулятора и тепловую изоляцию.

Аккумуляторы можно классифицировать по характе­ру физико-химических процессов, протекающих в тепло­аккумулирующих материалах (ТАМ):

аккумуляторы емкостного типа, в которых использу­ется теплоемкость нагреваемого (охлаждаемого) акку­мулирующего материала без изменения его агрегатного состояния (природный камень, галька, вода, водные ра­створы солей и др.);

аккумуляторы фазового перехода вещества, в кото­рых используется теплота плавления (затвердевания) вещества;

аккумуляторы энергии, основанные на выделении и поглощении теплоты при обратимых химических и фо­тохимических реакциях.

В аккумуляторах первой группы происходят последо­вательно или одновременно процессы нагревания и ох­лаждения теплоаккумулирующего материала либо непо­средственно за счет солнечной энергии, либо через теп­лообменник. Этот способ аккумулирования тепловой энергии наиболее широко распространен. Основным не­достатком аккумуляторов этого типа является их боль­шая масса и как следствие этого — потребность в боль­ших площадях и строительных объемах в расчете на 1ГДж аккумулируемой теплоты.

Сравнение различных теплоаккумулирующих матери­алов приведено в табл. 4.

Требования к теплоаккумулирующим материалам: высокая теплоемкость и энтальпия фазового перехода

Таблица 4. Сравнение некоторых теплоаккумулируюздих материалов

Характеристика ТАМ

Гранит,

галька

Вода

Глауберова соль (декагидрат сульфата натрия)

Парафин

Плотность, кг/м*

1600

1000

1460х

1330*

786і

Теплоемкость,

кДж/(кг-К)

0,84

4,2

1,92і

3,26*

2,89і

Коэффициент теплопро­водности, Вт/(м-К)

0,45

0,6

1,85і

1,714*

0,498і

Масса ТАМ для аккуму­лирования 1 ГДж теп­лоты при ДГ=20 К. кг

59 500

11 900

3300

3750

Относительная масса ТАМ по отношению к массе воды, кг/кг

5

1

0,28

0,32 ,,

Объем ТАМ для акку­мулирования 1 ГДж теплоты при ДГ»20 К,

49,6*

11,9

2,26

4,77

Относительный объем ТАМ по отношению к объему воды, м3/м*

4,2

1

0,19

0,4

Примечания: 1. Обозначения степени следующие: т — твердое — сос­тояние; ж — жидкое состояние; * — с учетом объема пустот — 26%.

2. Температура я теплота плавления: парафин — 47 °С я 209 яДж/иг; гла­уберова соль — 32 °С я 251 вДж/кг.

при достаточно высокой теплопроводности; высокая плот, ность материала и его химическая стабильность; безо­пасность и нетоксичность; низкая стоимость.

Система аккумулирования тепловой энергии характе­ризуется следующими параметрами: теплоаккумулирую­щей способностью или удельной энергоемкостью, ГДж/м3; диапазоном рабочих температур, °С; скоростью подвода и отвода теплоты при зарядке и разрядке акку- — мулятора, кДж/с.

Аккумуляторы теплоты емкостного типа (рис. 20) —: наиболее широко распространенные устройства для ак­кумулирования тепловой энергии. Теплоаккумулирующую способность или количество теплоты (кДж), которое может быть накоплено в аккумуляторе теплоты емкост­ного типа, определяют по формуле

Q = тСр(Тл — Ті),

где m — масса — теплоаккумулирующего вещества, кг;

Ср — удельная изобарная теплоемкость вещества, кДж/ /(кг*К); Т и Т2 — средние значения начальной и конеч­ной температур теплоаккумулирующего вещества, °С.

Наиболее эффективный теплоаккумулирующий мате­риал в жидкостных солнечных системах теплоснабже­ния— это вода. Для сезонного аккумулирования тепло­ты перспективно использование подземных водоемов, грунта, скальной породы и других природных образова­ний.

image032

Рис. 20.. Аккумуляторы тенлоты емкостного типа — водяной (а) и галечный (б):

) — теплообменник; 2 — холодная воде; 3 — горячая вода; 4 — теплоизолиро­ванный бак (бункер); б —слов гальки; б—решетка; 7, б —подвод (отвод)

воздуха

В крупномасштабных системах аккумулирования теп­лоты достаточно успешно используют железобетонные и стальные резервуары вместимостью до 100 тыс. м3, в которых горячая вода, обладающая значительной теп­лоемкостью [4,19 кДж/(кг-°С)], может сохранять при температуре 80—95 °С до 8 тыс. ГД ж теплоты. Они дос­таточно просты в эксплуатации, но требуют больших ка­питаловложений. Целесообразно их использование сов­местно с тепловыми насосами, в этом случае их тепло­аккумулирующая способность может удвоиться за счет более глубокого (до 5 °С) охлаждения воды в резервуаре.

Положительный опыт в сезонном аккумулировании теплоты накоплен в Швеции, где успешно эксплуатиру-

ются крупные гелиотеплонасосные системы теплоснабже­ния целых поселков. Однако для индивидуального потребления наибольший интерес представляют аккумуля­торы теплоты для небольших солнечных установок го­рячего водоснабжения и отопления,

На рис. 21 показаны примеры конструктивного испол­нения баков аккумуляторов вместимостью 200—500 л, применяемые в водонагревательных установках с есте-

image033

Рис. 21. Баки — аккумуляторы горячей воды:

а,—бак с подводом холодной воды снизу и внутренними перегородками; б — бак с поплавковым клапаном для Подвода холодной воды; в — бак с подводом теплоты из КСЭ через теплообменник; г — секционированный бак с электро­нагревателем; /.— теплоизолированный корпус; 2 — перегородка; 3 — подвод холодной воды; 4 — отвод горячей воды; 5 — поплавковый клапан; б —опуск­ная трубр; 7 — теплообменник; 4 — электронагреватель; 9 — теплообменник

ственной и принудительной циркуляцией. Как правило, используется вертикальный стальной бак высотой в 3— 5 раз больше его диаметра для обеспечения температур­ного расслоения воды. Тепловые потери бака снижаются путем применения теплоизоляции типа стекловаты тол­щиной не менее 50 мм. Внутренняя поверхность бака, контактирующая с водопроводной водой, должна быть защищена от коррозии. Для этого бак должен быть из­готовлен из нержавеющей стали, иметь эмалевое покры­тие или анод из магния или анодную защиту с внешним источником электричества. В баке могут быть предусмот­рены горизонтальные перегородки (рис. 21 ,а и г), по­плавковый клапан для подвода холодной воды (рис. 21, б) и труба для ее поступления в нижнюю часть бака, теплообменник в двухконтурной системе для подвода теплоты от КСЭ (рис. 21, в и г), электронагреватель и теплообменник для отвода теплоты в систему отопле­ния (рис. 21, г). Перегородки разделяют бак на секции с различными уровнями температуры воды по высоте, так что в верхней части бака вода имеет более высокую температуру, чем в нижней. Это повышает эффектив­ность аккумулирования теплоты. В схемах а и б тепло­носителем в КСЭ служит вода, а в схемах в и г—анти­фриз, поэтому используется теплообменник для переда­чи теплоты от антифриза к воде.

Галечный аккумулятор теплоты (рис. 22). В солнеч­ных воздушных системах теплоснабжения обычно при­меняются галечные аккумуляторы теплоты, представляю­щие собой емкости круглого или прямоугольного сече­ния, содержащие гальку размером 20—50 мм в виде насадки из плотного слоя частиц. Аккумуляторы этого ти­па обладают рядом достоинств, но по сравнению с во­дяным аккумулятором в этом случае требуется больший объем. Галечный аккумулятор может располагаться вер­тикально или горизонтально.

Горячий воздух, поступающий днем из солнечного коллектора в аккумулятор, отдает гальке свою теплоту, и таким образом происходит зарядка аккумулятора. При разрядке аккумулятора ночью или в ненастную погоду воздух движется в обратном направлении и отводит теп­лоту к потребителю.

При одинаковой энергоемкости объем галечного ак­кумулятора теплоты в 3 раза больше объема водяного бака-аккумулятора. Так, при массе гальки 10 т, пороз — ности слоя 8=0,4 и плотности частиц 1850 кг/м3 требу­ется объем галечного аккумулятора, равный V=m/p (1— е) =9 м3. Приняв, что при разрядке аккумулятора на­чальная температура частиц гальки равна 65 °С, а их конечная температура 21 °С, что вполне реально при воз­душном отоплении с помощью вентиляционной системы, получим количество теплоты, которое можно использо­вать для отопления из аккумулятора [удельная теплоем­кость гальки с«0,88кДж/(кг-К) или 1630кДж/(м3-К)]: <2—тс{Ттч — Ткоя) = Ю4-0,88(65—21) = 387,2 МДж. При часовой тепловой нагрузке 20 МДж/ч этого запаса энергии хватит на 19,36 ч.

Аккумуляторы теплоты фазового перехода. Основное преимущество теплоты с фазовым переходом — высокая

image034

Рис. 22. Общий вид млечного аккумулятора:

/ — крышка; І — бункер; а —бетонный блок; 4 — теплоизоляция; 5 —сетка;

6 — галька

удельная плотность энергии, благодаря чему существен­но уменьшаются масса и объем аккумулятора по срав­нению с емкостными аккумуляторами.

Для низкотемпературных солнечных систем тепло­снабжения в аккумуляторах фазового перехода наибо­лее пригодны органические вещества (парафин и неко­торые жирные кислоты) и кристаллогидраты неоргани­ческих солей, например гексагидрат хлористого кальция СаСІ2;6Н20 или глауберова соль NajSO*- 10Н2О, плавя­щиеся при 29 и 32°С соответственно. При использова­нии кристаллогидратов возможно разделение смеси и ее переохлаждение, вызывающие нестабильность этих не­дорогих веществ и снижающие число рабочих циклов. Для устранения этих недостатков к теплоаккумулирую­щему материалу добавляют специальные вещества, кото­рые обеспечивают равномерную кристаллизацию распла­ва и способствуют длительному использованию материа­ла в многократных циклах плавления — затвердевания. Для организации эффективного теплообмена использу­ются оребренные поверхности, капсулы, заполненные теплоаккумулирующим материалом, а также теплопро­водные матрицы (ячеистые структуры). Это необходимо в первую очередь при использовании органических ве­ществ, имеющих очень низкий коэффициент теплопро­водности [0,15 Вт/(м-°С)].

Какой требуется уход за солнечными установками?

По сравнению с обычными установками они требуют мало ухода. Для обеспечения контроля за работой уста- новки необходимо установить приборы: манометр для измерения давления в закрытых системах, термометры или термопары для контроля температуры на входе и выходе коллектора, в аккумуляторе. Если перепад тем­ператур в коллекторе уменьшается, это свидетельству­ет о забивании теплообменника. Загрязнение остекления, попадание воздуха в коллектор снижают теплопроизво — дительность коллектора.

При появлении протечек в жидкостных гелиосисте­мах из-за повреждения труб, возникновения неплотностей в местах сварки и уплотнений система должна быть вы­ключена.

При нарушении целостности остекления коллектора, его разгерметизации внутрь коллектора попадают осад­ки, которые ухудшают качество материалов, в том чис­ле тепловой изоляции, и снижают теплотехнические по­казатели коллектора в целом.

Таблица П1. Дневное поступление суммарной Ё н рассеянной £р солнечной радиации (МДж/м2) и температура наружного воздуха Г, (°С) по месяцам

Показа­

тель

I

її

Hi

IV

V

VI

VII

VIII

IX

X

XI

XII

Алма-Ата, 43,4° с

ш.

Е

6,34

9,24

12,01

16,54

20,52

22,66

23,62

20,79

16,96

11,20

6,67

5,13

Ер

3,64

5,21

6,21

6,95

8,1

7,78

6,68

6,34

5,28

4,18

3,34

2,7

ті

—11,5

—8,9

0,8

10,3

16

20,3

‘ 22,9

21,7

15,6

8

-1,2

—8,2

Ашхабад, 38° с. ш.

7,42

10,58

13,63

18,35

24,16

26,83

26,59

24,97

20,57

14,71

9,03

3,64

5,07

6,34

7,78

8,1

7,92

7,83

6,48

5,98

4,72

3,89

1

4,3

9,8

16,4

22,8

27,3

29,3

27,7

22,6

15,3

8,4

Баку, 41,1° с. ш.

8,77

2,02

6,7

5,13

3,1

-U2

Е

9,99

14,3

18,49

24,05

27,13

29,61

27,40

25,11

20,01

15,66

10,7

Ер

2,16

2,83

3,78

4,73

5,26

6,53

6,34

5,4

3,89

3,64

2,5

Тв

3

4,4

6,8

11,8

18,4

23,4

26,5

26,3

22,1

16,9

11,1

Ереван, 40,1° с. ш.

Е

6,34

10,13

14,04

19,18

24,97

28,22

27

25,11.

20,154

14,85

8,06

Ер

4,05

5,96

7,02

8,2

8,23

7,78

6,88 ’

6,34

5,38

4,86

3,89

Гв

-3,7

-2,3

4

11,1

15,9

20,1

24

24,2

20

13,9

6,2

 

image132

 

Таблица П2.. Дневное поступление солнечной энергии (МДж/м*) на горизонтальную поверхность и пропускании солнечной энергии через одинарное оконное стекло в стенах различной ориентации

Месяц я дата

‘ция

поверх*

ноетя

21.01

21.02

21.03

21.04

21.05

21.06

21.07

21.08

21.09

‘ 21.10

21.11

21.12

Широта 40е с. ш.

Горизон­

тальная

8,04

12,44

17,34

21,72

24,58

25,56

24,42

21,47

16,75

12,26

8,04

6,4

С

1,38

1,91

2,59

3,5

4,88

5,74

5,06

3,72

2,7

2,0

1,43

1,18

СВ

1,66

3,45

6,86

11,37

15,12

16,66

15,12

11,3

6,6

3,45

1,7

1,27

В

10,26

14,71

18,88

21,72

23,24

23,56

22,88

21,06

17,86

14,14

Ю,1

8,49

ЮВ

20,52

23,81

24,67

22,56

20

18,57

19,48

21,7

23,45

22,84

20,13

18,66

ю

18,45

18,64

15,75

11,08

8,13

7,15

7,99

10,76

15,25

17,96

18,11

17,59

юз

6,2

5,68

5

4,52

4,54

4,63

4,63

4,65

5,04

5,61

6,11

6,26

3

1,4

1,93

2,6

3,36

4

4,27

4,11

3,56

2,7

2,02

1,43

1,2

СЗ

1,38

1,91

2,56

3,34

3,95

Широта

4,22 48е с. ш

4,09

3,54

2,68

2

1,43

1,18

ГорИЗОН-

тальная

4,61

6,97

14,44

19,86

23,72

25,15

23,65

19,72

13,94

8,88

4,63

3,2

С

0,98

1,54-

2,27

3,34

4,88

5,83

5,06

3,56

2,38

1,6

1

0,75

СВ

1,04

2,43

5,67

10,46

14,64

16,39

14,66

10,42

5,45

2,45

1,07

0,78

В

7,17

12,28

17,59

21,72

24,17

24,86

23,86

21,09

16,55

11,78

7,04

5,29

ЮВ

16,55

21,97

24,97

24,54

22,86

21,68

22,31

23,61

23,61

21,08

16,18

13,85

ю •

15,91

18,45

17,41

13,73

10,96

9,9

10,76

13,32

16,73

17,68

15,57

13,98

юз

5,88

5,92

5,99

5,36

5,11

5,18

5,2

5,24

5,52

5,81

5,79

5,61

3

• 0,98

1,54

2,29

3,2

3,95

4,29

; 4,1 ‘

3,43

2,41

‘ 1,63

1

0,8

СЗ

0,98 ,

1,54 ,

2,27;

3,18

3,93

4,27

4,06

3,38

2,38

1,61

1

0,75

Примечание. Ориентация — запад; СЗ — северо-запад.

окон: С —север; СВ —северо-восток; В — восток; ЮВ— юго-восток; Ю — юг; ЮЗ—юго-запад;

1. Аббот Ч. Солнце: Пер. с анг. М—Л., ОНТИ, 1936.

2. Авезов Р. Р., Орлов А. Ю. Солнечные системы отопления и горячего водоснабжения. Ташкент: Фан, 1988.

3. Андерсон Б. Солнечная энергия (основы строительного проек­тирования): Пер. с англ./Под ред. Ю. Н. Малевского. М.: Стройиз — дат, 1982.

4. Ахмедов Р. Б. Технология использования нетрадиционных и возобновляемых источников энергии. (Итоги науки и техники. Сер. Нетрадиционные и возобновляемые источники энергии.) М., ВИНИТИ, 1987.

5. Байрамов Р. Б., Ушакова А. Д. Солнечные водонагреватель­ные установки. Ашхабад: Ылым, 1987.

6. Байрамов Р. Б., Ушакова А. Д. Системы солнечного теплохо — лодоснабжения в энергетическом балансе южных районов страны/ Под ред. Л. Е. Рыбаковой. Ашхабад: Ылым, 1987.

7. Байрамов Р. Б., Сейиткурбанов С. Теплонасосные установки для индивидуальных потребителей. Ашхабад: Ылым, 1984.

8. Бекман У. А., Клейн С., Даффи Дж. Расчет систем солнечно­го теплоснабжения: Пер. с англ. М.: Энергоиздат, 1982.

9. Берковский Б. М., Кузьминов В. А. Возобновляемые источни­ки энергии на службе человека/Под ред: А. Е. Шейндлина. М.: Нау­ка, 1987.

10. Бринкворт Б. Дж. Солнечная энергия для человека: Пер. с англ./Под ред. Б. В. Тарнижевского. М.: Мир, 1976.

11. Даффи Дж. А., Бекман У. А. Тепловые процессы с использо­ванием солнечной энергии: Пер. с англ./ Под ред. Ю. Н. Малевского. М.: Мир. 1977.

12. Денисенко Г. И. Возобновляемые источники энергии. Киев: Вища школа, 1983.

13. Дверняков В. С. Солнце—жизнь, энергия. Киев: Наукова думка, 1986.

14. Дэвинс Д. Энергия: Пер. с англ./Под ред. Д. Б. Вольфберга. М.: Энергоиздат, 1985.

16. Зоколей С. В. Солнечная энергия и строительство: Пер. с англ./Под ред. Ю. Н. Малевского. М.: Стройиздат, 1979.

16. Зоколей С. В. Архитектурное проектирование, эксплуатация объектов, их связь с окружающей средой: Пер. с англ./Под ред. В. Г. Бердичевского, Б. Ю. Бранденбурга. М.: Стройиздат, 1984.

17. Использование солнечной энергии для теплоснабжения зда — ний/Э. В. Сарнацкий, Ю. А. Константиновский, А. И. Заваров и др. Киев: Будивельник, 1985.

18. Капралов А. И. Рекомендации по применению жидкостных солнечных коллекторов. Кишинев; Картя Молдовеняскэ, 1988.

19. Колтун JVC М. Солнце й человечество. М.: Наука, 1981.

20. Крецу И. В., Чабан А. Г. Солнечная энергия служит челове­ку. Кишинев: Картя Молдовеняска, 1982.

21. Мак-Вейг Д. .Применение солнечной энергия: Пер. с англ./ Под ред. Б. В. Тарнижевского. М-: Энергоиздат, 1981.

22. Мировая энергетика: прогноз развития до 2020 г.: Пер. с англ./Под ред. Ю. Н. Старшинова. М.: Энергия, 1980.

23. Оболенский Н. В. Архитектура и солнце. М: Стройиздат, 1988.

24. Одум Т., Одум Э. Энергетический базис человека и природы: Пер. с англ./Под ред. А. П. Огурцова. М.: Прогресс, 1978.

25. Рекомендации по определению климатических-характеристик гелиоэнергетических ресурсов на территории СССР/Гл. геофиз. об — серв. ЭНИН. Л.: Гндроыетеоиздат, 1987.

26. Рекомендации по определению энергетической и экономиче­ской эффективности гелиосистем теплоснабжения жилых и общест­венных зданий. Ташкент, ЭНИЭП, 1986.

27. Сабадн П. Р. Солнечный дом: Пер. с англ. М.: Стройиздат, 1981.

28. Селиванов Н. П. Энергоактивные солнечные здания. М.: Зна­ние, 1982.

29. • СНиП 2.04.07-86. Тепловые сети. М.: Стройиздат, 1987.

30. — СНиП 2.04.05-86. Отопление, вентиляция ■ кондиционирова­ние воздуха. М.: Стройиздат, 1887.

31.. СНиП П-34-75. Горячее водоснабжение. М.: . Стройиздат, 1976.

32.. Спасов К. И., Балабанов М. М., Ставков А. Е. Лроехтиране н конструиране на топлинни елънчеви инсталации. София: Техника,

1988.

33. СіюавочтіК’по климату СССР. В 34-х вып. Л.: Гндрометео-

издат, 1988. * •

34. Танада С.,СудгР. Жрлые дома с автономным солнечным теш10хладоснабжением: Пер. С яп. М.: Стройиздат, 1989.

35. ‘ Уделл С. Солнечная энергия н другие альтернативные источ­ники энергии. М.: ’Знание, 198Q.

36. УсакорсКий В. М. Возобновляющиеся источники энергии, М.: РоссельхоЗиздат, 1985.

‘ 37.’ Харченко Н. В. Гелиотеплонасосные системы теплоснабже­

ние с сезонным аккумулированием теплоты: Обзор, информ. М.: Ин — формэнерго, 1989.

38. Харченко Н. В., Делягин Г. Н. Солнечные теплогенерирую­щие установки для систем теплоснабжения. М., МИСИ, 1987.

39. Харченко Н. В.. .Никифоров В. А. Системы гелиотеплоснаб­жения н методика их расчета. Киев: Знание, 1982.

40. Энергоактивные здания/Н. П. Селиванов, А. И. М. елуа, С. В, Зоколей и др.; Под ред. Э. В. Сарнацкого, Н. П. Селиванова, М.: Стройиздат, 1988.

41. Advaaces in Solar Energy/Ed. К. W. s Boer. New York, Lon­don: Plenum Press. 1988. (Vol. 1—4).

42. Advances in Solar Energy Techqology/Ed. H. P, Garg, Dor­drecht c: Reidel Publ. Qp., 1987. (Vol. 1—3).

43. Healthy builgmgs/Eds. B. Berglund, T. Llndvall. Stockholm: Swedish Council for Building Research, 1988.

44. Lorenz—Ladener C., Ladener H. Solaranlagen in Selbstbau. Freiburg, Grebensteinr Okobuch Verlag, 1985.

[1] Теплота сгорания условного топлива равна 29,33 МДж/кг.

[2]год = В’б/год,

[3] — шланг; 2 — водопроводный кран; 3 — душ; 4 — полимерная пленка; 5—ящик

ИЗГОТОВЛЕНИЕ И МОНТАЖ СОЛНЕЧНЫХ КОЛЛЕКТОРОВ

Коллекторы солнечной энергии, как правило, изготов­ляются в заводских условиях, а на месте они монтиру­ются на опорной конструкции. Однако простые коллек-

торы можно изготовить собственными силами, хотя сле­дует иметь в виду, что их эффективность будет не слиш­ком высокой. Основным элементом солнечного коллек­тора является абсорбер, т. е. лучепоглощающая поверх­ность. Конструктивное выполнение абсорберов различных типов для жидкостных и воздушных коллекторов пока­зано на рис. 10 и 11. В жидкостных коллекторах наибо­лее часто используется лучепоглощающая поверхность, представляющая собой ряд трубок небольшого диаметра (10—15 мм), соединенных с плоским ребром (листом). Трубки могут располагаться сверху, снизу или в плоско­сти листа. Трубки присоединяются к верхнему и нижне­му гидравлическим коллекторам. В других конструкциях используются соединенные между собой плоский и гофри­рованный листы с каналами для теплоносителя либо штампованный абсорбер. В воздушных коллекторах лу — чевоспринимающая поверхность обычно представляет со­бой плоский лист с оребрением или без него, омываемый потоком воздуха снизу, сверху или с обеих сторон.

Для эффективной и надежной работы коллектора в те­чение длительного срока важное значение имеет правиль­ный выбор материала для изготовления абсорбера, о чем говорилось выше. Не менее важно обеспечить хороший тепловой контакт между трубками и оребрением. Ребро может быть приварено, припаяно и присоединено к труб­кам с помощью хомутиков или пружинящих прижимов. Конечно, наилучший способ соединения — сварка или пайка. Способ и качество соединения трубок для тепло­носителя е лучепоглощающим листом сильно влияют на его тепловую эффективность, которая зависит от многих конструктивных факторов.

Корпус коллектора должен быть герметичным и не должен допускать утечки теплоносителя и попадания вла­ги и пыли внутрь коллектора. Для этого остекление долж­но быть надежно уплотнено. Примеры конструктивного выполнения уплотнения узлов соединения лучепоглоща — ющей поверхности н остекления с корпусом показаны на рис. 73.

На рис. 73, а показана конструкция уплотнения двух­слойного остекления жидкостного солнечного коллектора. Стекло уплотняется с помощью П-образной прокладки из силиконовой резины. Для обеспечения необходимого воз­душного зазора толщиной 15—25 мм между слоями ос­текления используется деревяввая или пластмассовая

вставка. При сборке коллектора остекление зажимается между деталью корпуса коллектора и прижимной крыш­кой. Форма этих двух деталей обеспечивает фиксацию их взаимного расположения и положения остекления. Они соединяются с помощью винтов.

На рис, 73, б показан вариант крепления солнечного коллектора на крыше дома. Коллектор содержит луче — поглощающую поверхность с трубами для теплоносителя,

image102

Рис. 73. Конструкция уплотнения двухслойного остекления (а) и крепления солнечного коллектора (б) на крыше дома:

а: I — стекло; 2 — уплотнение: 3 — вставка: 4 — корпус коллектора; S — крыш­ка: 6 — винтовое соединение; б: і — абсорбер; 2 — теплоизоляция: 3 — стекло; 4 — уплотнение; S — штампованная деталь: 6 — накладка; 7 —винтовое соеди­нение; 8 — балка; 9 — стропило; 10 — покровный материал крыши; // — доска; 12 — уголок; S3 — винтовое соединение

теплоизоляцию и однослойное остекление. Стекло поме­щается между двумя резиновыми прокладками на полке фигурной детали корпуса и прижимается с помощью на­кладки и винтового соединения. Коллектор крепится к строительной конструкции крыши, включающей дере­вянную балку и стропило. Покровный материал крыши закрепляется на досках с уплотнительными уголками и резьбовым соединением.

image103 image104

На рис. 74 представлены схемы подвода и отвода жид­кого теплоносителя в коллектор, абсорбер которого вы­полнен из ряда трубок (а и б) или из змеевика (в). Со­единение по схеме б менее удачно, чем по схеме а, так

Рис. 74. Схемы соединения труб в КСЭ:

а — Z-образная схема; б — центральный подвод и отвод воды; в — змеевик

как не обеспечивает равномерного распределения жидко­сти по трубкам. В змеевике (схема в) должен быть ук­лон, обеспечивающий вытеснение воздуха при его запол­нении водой.

Конструктивное исполнение жидкостного штампован­ного коллектора показано на рис. 75. Коллектор может иметь большие размеры, и в нем предусмотрен уклон верхнего и нижнего гидравлических коллекторов для удаления воздуха. Толщина листа 1—1,5 мм, площадь поперечного сечения канала для теплоносителя 10X2 мм, а размеры сечения гидравлических коллекторов 25X3 мм.

Коллектор солнечной энергии может содержать не­сколько отдельных модулей, соединенных параллельно. Для обеспечения равномерного распределения жидкого теплоносителя необходимо использовать схемы соедине­ния, показанные на рис. 76, а и б, или устанавливать на

Рис. 75. Конструкция штампо-
ванного жидкостного солнечно-
го коллектора:

image105

image106

1 — остекленный теплоизолирован-
ный корпус; 2 — канал для тепло-
носителя; 3 — подвод теплоноси-
теля; 4 — отвод теплоносителя

бивается на несколько подмассивов, состоящих из опре­деленного числа рядов, включающих по пять—десять модулей. На рис. 77 показан подмассив из 50 модулей КСЭ, разделенный на десять рядов по пять модулей в каждом.

Коллекторы солнечной энергии могут быть установ­лены на крыше дома, на земле, на козырьке над окном или на навесе для автомобиля (рис. 78). Целесообразно устанавливать коллектор в плоскости наклонной крыши в случае, если углы наклона крыши и КСЭ совпадают.

При монтаже КСЭ на горизонтальной крыше К. СЭ уста­навливают на опорной конструкции, обеспечивающей оптимальный угол наклона. Коллектор может служить ограждением балкона (рис. 79) или быть частью стены.

Подпись: ГВ ГВ Рис. 77. Схемы параллельного соединения плоских fa) и вакуумиро- ванных (б) солнечных коллекторов:

Возможны различные варианты размещения солнеч-

І — нодуль КСЭ; 2 — трубопровод холодной воды; 3 — ответвление к группе КСЭ; 4 — сборный трубопровод горячей воды; 5 — общий трубопровод горячей

воды

ного коллектора на крыше (рис. 80). Коллектор совме­щается с южным склоном крыши (а), составляет часть южной стены (б), размещается вертикально за стеклян­ной частью крыши (в) или устанавливается на опорах на крыше и на балконе (г). Вариант а используется для горячего водоснабжения, остальные — для отопления, так как в системе отопления угол наклона коллектора должен быть большим. Для увеличения поступления солнечного излучения на коллектор применяется плос­кий отражатель (б иг). Бак аккумулятор для горячей воды может размещаться на чердаке.

Совмещение коллектора с крышей дает следующие

image108

Рис. 78. Варианты установки солнечных коллекторов:

о —на земле; б — на крыше дома; в — на навесе для автомобиля; г — как

часть стены

преимущества: удешевляется строительство, так как кол­лектор заменяет крышу и не требуется специальная опор­ная конструкция; снижаются теплопотери коллектора, так как его нижняя поверхность и соединительные трубы не контактируют с наружным воздухом, однако усложня­ются монтаж и ремонт. Недостатком является также то, что угол наклона крыши может не совпадать с оптималь­ным углом наклона коллектора. При свободной установ­ке коллектора или гелиоустановки в целом облегчается монтаж и ремонт, обеспечивается оптимальная ориента­ция и наклон коллектора, но требуется устойчивая опор­ная конструкция, а это повышает стоимость строитель­ства, увеличивает теплопотери от коллектора и труб и при этом не всегда удается удовлетворить эстетичес­кие требования при размещении гелиоустановки на кры­ше дома.

При прохождении труб через крышу или стену отвер­стия должны быть тщательно уплотнены. Осуществляя

image109

Рис. 79. Солнечные коллекторы — ограждение балкона

монтаж КСЭ, следует соблюдать меры предосторожно­сти, чтобы не повредить остекление.

На рис. 81 показан пример расположения солнечно­го коллектора на крыше жилого дома. Обращает на себя внимание рациональное архитектурное решение, обеспе­чивающее хорошее эстетическое восприятие гелиосис­темы.

Крыша должна выдерживать вес гелиоустановки. Для уменьшения локальной нагрузки под ножки опорной конструкции подкладывают настил или швеллеры. При

image110

Рис. 80. Варианты размещения солнечного коллектора на крыше:

а — совмещение с кровлей; б — на южной стене с отражательной поверхно­стью; в — на чердаке с остекленной крышей; г — на опорной конструкции и на балконе; / — коллектор; 2 — бак-аккумулятор; 3 — отражательная поверх­ность; 4 — остекленная крыша; 5—ограждение балкона

необходимости несущая способность крыши должна быть усилена. Гелиоустановка должна быть надежно закреп­лена с помощью проволочных растяжек, анкерных болтов (заделанных в бетонное основание), чтобы она могла выдерживать ветровую нагрузку. Размещать гелиоуста­новку следует ближе к коньку в центре крыши. Все от­верстия для труб должны быть тщательно уплотнены, чтобы в дом не попадала влага.

image111

Рис. 81. Жилой дом с солнечными коллекторами на крыше

Современная тенденция состоит в разработке коллек­торов с малой удельной массой и хорошими оптико-теп­лотехническими характеристиками. При этом легко осу­ществляется их монтаж. Примером может служить кол­лектор МЕГА, разработанный совместно Швецией и Канадой. Особенностью коллектора является применение сворачиваемого в рулон абсорбера, представляющего со­бой медную трубку с алюминиевым ребром с селектив­ным покрытием. Он может иметь большие длину (до 100 м) и поверхность (до 250 м2). На место монтажа сол­нечной установки абсорбер поставляется в виде рулона, а там он «разматывается» и монтируется в корпусе. Тех­нология монтажа демонстрируется на рис. 82. Вначале (/) анкерными болтами закрепляют опорную конструк­цию и подкладывают резиновую надувную подушку под корпус коллектора. Затем на закрепленный в корпусе слой тепловой изоляции укладывают разматываемые по-

image112

image113

Рис. 82. Монтаж крупномасштабного солнечного коллектора

лосы абсорбера, которые предварительно «раздувают». На этом же этапе (2) производят механическое соеди­нение медных трубок абсорбера с гидравлическими кол­лекторами. После этого с помощью _ сжатого воздуха (1 МПа) раздувают все трубки абсорбера до их полного размера в поперечном сечении (5). Па следующем этапе (4) устанавливают остекление, при этом используют ли­сты размером 1,2X1.2 м. Накачивают (5). резиновые ка­меры, поднимающие коллектор до такого положения, ко­торое соответствует оптимальному углу наклона для данной местности. Устанавливают постоянную, опорную конструкцию и убирают надувные подушки (6).

Описанная прогрессивная технология обеспечивает высокую производительность труда монтажников — трое рабочих за день могут собрать 125 м2 коллектора, име­ющего длину 50 м. Единичный модуль размером 2,5>< Х3<2 м поступает е завода в собранном виде (кроме аб­сорбера и остекления), имеет массу 50 кг, поэтому его легко устанавливать двум рабочим.

Эти коллекторы имеют следующие преимущества: ма­лую удельную массу, отнесенную к 1 м2 площади поверх­ности коллектора; отличные оптико-теплотехнические ха­рактеристики: эффективный оптический КПД, который равен 0,746, коэффициент теплопотерь 3,68 Вт/ (м2• К), высокую надежность. В этой конструкции исключается 75—80 % наружных соединений труб, благодаря чему снижаются теплопотери и исключаются затраты на мон­таж, тепло — и гидроизоляцию трубопроводов. При темпе­ратуре теплоносителя до 60 °С можно использовать не­большое количество теплоизоляционного материала, а при более высокой температуре требуется система подав­ления конвекции воздуха в з|зоре между лучепоглоща — ющей поверхностью и остеклением Коллектора. Стои­мость коллектора ниже, чем коллекторов стандартных конструкций, и соответственно меньше срок окупаемости. Еще одной особенностью этого коллектора является ис­пользование легковесной опорной конструкции.

Существенно повышает КПД коллектора наряду с применением селективных покрытий также использо­вание прозрачной гофрированной вставки между одно­слойным остеклением и селективным абсорбером и отра­жательной пленки (фольги) над слоем теплоизоляции ‘(рис. 83). Вставка предназначена для снижения конвек­тивных теплопотерь и изготовлена из фторированного
полимера (пленка толщиной 0,025 мм), имеющего про — пускательную способность 0,98. Абсорбер изготовлен из нержавеющей стали и имеет селективное покрытие. Эф­фективный оптический КПД коллектора равен 0,79, а ко­эффициент теплопотерь 3,3 Вт/(м2-К).

Солнечные коллекторы из полимерных материалов. Дешевые высокоэффективные и надежные плоские сол­нечные коллекторы могут быть изготовлены с широким

Подпись: Рис. 84. Складывающийся жидко-стный коллектор большой длины: Подпись: 1 — абсорбер; 2 — отражатель; «? — полимерная пленка; 4 — теплоизоля- ция; 5 — наружная полимерная плен- ка; 6 — автопокрышка _________ 2________ __

/VWWW

’мш:

Рис. 83. Высокоэффектив-
ный солнечный коллектор с
низкими конвективными
теплопотерями:

1 — прозрачная гофрированная вставка; 2 — остекление; 3 — абсорбер: 4 — отражательная

пленка; 5 — теплоизолирован-
ный корпус

использованием тонких полимерных пленок и пеноплас­тов. Масса КСЭ может быть доведена до 2,5 кг на 1 м2 лучепоглощающей поверхности.

Конструкция КСЭ содержит всего четыре элемента: абсорбер с селективным покрытием, алюминиевую штам­пованную раму, пенопластовую теплоизоляцию и внеш­нюю оболочку из полимерной пленки, приклеенной краме.

Один и тот же элемент выполняет несколько функций. Пленка, служащая прозрачной изоляцией, одновременно обеспечивает подавление конвекции воздуха. Нижняя пленка защищает коллектор от воздействия внешней сре­ды. Обе эти пленки работают на растяжение. В то же время пенопласт, служащий тепловой изоляцией, работа­ет на сжатие.

При рациональном выборе полимерных материалов обеспечивается такая конструкция КСЭ, которая отли­чается высокой эффективностью и хорошими прочностны-
ми характеристиками при малой массе. КСЭ способен выдерживать силу ветра в 5 м/с и более.

Полимерная пленка предварительно термически де­формируется, благодаря чему она образует элементы, работающие на растяжение. В сочетании с жесткой пено­пластовой теплоизоляцией образуется конструкция КСЭ, подобная конструкции предварительно напряженного крыла самолета.

Селективная поглощательная способность абсорбера зависит от толщины пленки. По сравнению со стеклом полимерная пленка лучше пропускает солнечное излуче­ние.

Совершенствование конструкции КСЭ позволит повы­сить его КПД при сравнительно невысокой равновесной температуре, благодаря чему тепловое напряжение ма­териалов абсорбера уменьшится и значительно снизится стоимость при широком выборе полимеров.

На рис. 84 показана конструкция дешевого жидкост­ного КСЭ, который может применяться в гелиосистемах горячего водоснабжения, отопления, опреснения морской воды и т. п. Коллектор содержит абсорбер с каналами для теплоносителя, отражатель, два слоя полимерной пленки с сеткой между ними, теплоизоляцию, защищен­ную полимерной пленкой. Под коллектор подкладывают старые автопокрышки. Коллектор имеет малую массу, его длина может достигать 50 и 100 м. Он может. достав­ляться в рулонах. На месте рулон разворачивают и го­товый коллектор устанавливают на отведенной площад­ке. Стоимость коллектора весьма низкая, кроме того, он прост в эксплуатации, КПД его может достигать 75 %. При длине секции КСЭ 100 м и расходе воды 3 л/с тем­пература воды повышается на 40 °С при плотности по­глощенного потока солнечной радиации 500 Вт/м2, а па­дение давления составляет всего 5 кПа на 100 м длины.

Дешевые воздушные коллекторы могут быть изготов­лены на месте. В частности, часть крыши здания или его стены может быть использована как абсорбер (метал­лический лист), сверху защищенный стеклом, а снизу омываемый потоком воздуха. Другой вариант воздушно­го солнечного коллектора можно самим изготовить, ис­пользуя недорогие и доступные материалы. Корпус кол­лектора изготовляется из фанеры или тонких досок, на дно ящика укладывается слой теплоизоляции толщиной 50—75 мм (минеральная вата или пенопласт), сверху на
него кладется отражательная пленка (фольга), затем в наклонном положении по диагонали закрепляется ме­таллическая сетка, предварительно окрашенная в черный матовый цвет. На сетку кладут небольшой слой (5— И) мм) зачерненной стружки черного металла. Подвод холодного воздуха осуществляется через патрубок 6, а отвод нагретого воздуха — через патрубок 7. Сверху коллектор имеет остекление (рис. 85). Нагрев воздуха солнечной энергией осуществляется при его движении через слой стружки на сетке, который поглощает солнеч­ную энергию. Внутренняя поверхность коллектора долж­на быть покрашена матовой черной краской. Необходимо обеспечить герметичность канала, по которому движется воздух.

Подпись: 8 4 5 ^ 2 J ■ f> Рис. 85. Воздушный солнечный коллектор матричного типа:

1 — Ropjiyc; 2 — теплоизоляция? З — отражательная пленка; 4 — сетка; 5 —стружка; € — подводи* щий патрубок; 7 — отводящий па­трубок; 8 — остекление

Изготовление и установка аккумулятора теплоты.

Бак-аккумулятор горячей воды должен изготовляться промышленным способом. Водяной бак-аккумулятоо теплоты может быть изготовлен из листовой стали, асбо­цементного стекловолокна, бетона, а бункер галечного аккумулятора — из бетона или дерева с металлической обшивкой. Следует иметь в виду, что асбоцементный бак выдерживает температуру не выше 80 °С.

Резервуар должен иметь внутреннее защитное по­крытие. Основание аккумулятора может быть выполнено из бетонной плиты или залито при строительстве фунда­мента дома. Толщина тепловой изоляции составляет от 75 до 300 мм.

Трубопроводы и теплообменники для солнечных ус­тановок. Расход воды в солнечных установках может из­меняться от 30 до 100 л/ч на 1 м2 лучепоглощающей по­верхности КСЭ, точнее, 30—40 л/ч для водонагревате­лей с естественной циркуляцией воды, 40—60 л/ч для установок отопления и горячего водоснабжения с прину­

дительной циркуляцией, 70—100 л/ч для установок, ис­пользуемых в плавательных бассейнах. При использова­нии антифриза, теплоемкость которого на 20 % ниже, чем воды, расход должен быть больше на 20 %. Скорость теплоносителя в трубопроводах должна быть равной 0,5—1м/с. Диаметр трубопроводов можно определить по полезной мощности коллектора. Так, при КПД коллек­тора 0,5, плотности потока солнечной энергии 800 Вт/м2 и разности температур воды в КСЭ 10 °С расход теплоносителя равен 0,5-800/(1,16* 10) =41,3 кг/(м*-ч). При площади поверхности КСЭ 20 м2 и скорости воды 1 м/с площадь поперечного сечения трубопровода соста­вит 41,3-20/(1 -3600* 103) =2,29-10-4 м2 и его диаметр бу­дет равен]/ 4 • 0,000229/л=0,017 м. Скорость воды в во­донагревателях с естественной циркуляцией равна 0,05— 0,1 м/с. Тогда при площади КСЭ 10 м2, удельном рас­ходе воды 30 л/ (м2-ч) и скорости 0,1 м/с диаметр труб составит 32,6 мм.

Скорость воздуха в воздуховодах принимается до 3 м/с. Удельная объемная теплоемкость воздуха в 3500 раз меньше, чем воды, и соответственно объемный рас­ход воздуха в КСЭ составит 50—300 м8/ч на 1 м2 пло­щади поверхности КСЭ. Диаметр воздуховодов в 30 раз больше диаметра трубопроводов для воды.

Теплопотери от трубопроводов существенно умень­шаются при применении теилоизоляции. Так, при диа­метре трубы ’20 и 48 мм без теплоизоляции теплопотери при разности температур воды и наружного воздуха 40 °С составляют 27 и 57 Вт на 1 м длины трубы, а при применении теплоизоляции с коэффициентом теплопро­водности 0,035 Вт/(м-К) и толщине 40 мм — 5,2 и 7,7 Вт соответственно.

Трубопроводы следует прокладывать по кратчайше­му пути между КСЭ, аккумулятором теплоты и потреби­телем в сухих местах с обязательным применением теп­лоизоляции и обеспечением возможности удлинения.

При разности температур 100 °С удлинение составля­ет для стекла 0,45 мм/м, плексигласа 3,5, поливинилхло­рида 3,8, полиэтилена 10, стали 1,2, меди 1,7, алюминия 2,4 мм/м.

Для передачи теплоты из КСЭ в аккумулятор исполь­зуется теплообменник — это может быть змеевик внутри бака-аккумулятора, или рубашка вокруг его наружной поверхности, или отдельный противоточный теплообмен-

 

image117

 

 

image118

САЧ

 

{жНЗ~

 

ОП

 

Котел

 

J—г

 

ОН 3 HJL 3

 

ок 3 рд Уй

ККхыхь«Дя

 

*1

 

РВ

 

д.

 

image119

ник. Коэффициент теплопередачи К составляет 300— 400 Вт/(м2-°С) для рубашки, 500—900 для гладкотруб­ного змеевика в неподвижной жидкости, 1000—2000 Вт/ /(м2*°С) для противоточного теплообменника, а для воз­душного теплообменника /С=12-н20 Вт/(м2>°С). При средней разности температур теплоносителей 8 °С плот­ность передаваемого теплового потока составляет для указанных теплообменников 2,4—3,2; 4—7,2; 8—16 и 0,096—016 кВт/м2. Для нетеплоизолированного трубо­провода коэффициент теплопотерь составляет 10 Вт/ / (м2-°С).

Теплообменник для передачи теплоты из аккумуля­тора к потребителю обычно имеет большие размеры но сравнению с теплообменником в контуре солнечного кол­лектора, и поэтому в большинстве случаев (кроме не­больших установок) используются отдельные теплооб­менные аппараты противоточного типа.

При использовании воздушных коллекторов для на­грева воды требуется пластинчатый теплообменник типа воздух — вода, в этом случае обязательно применение ребер со стороны воздуха, так как теплообмен там про­исходит весьма неинтенсивно и коэффициент теплопере­дачи от воды к воздуху составляй[3] 16—-15 Вт/(м2*°С).

На рис. 86 показана схема солнечной установки ото­пления и горячего водоснабжения с необходимой арма­турой и измерительными; приборами. Для удаления воз­духа в верхней точке установлен воздушник В, из ниж­них точек предусмотрен слив жидкости через дренажные вентили Д, на линии горячей воды установлен пре­дохранительный клапан 17, на линии возврата теплоно — носителя в КСЭ имеются запорные краны 3 (до и после насоса Я), расширительный бак РБ и обратный клапан ОК, на линии подачи водопроводной воды устанавлива­ются регулятор давления РД, запорный кран 3, обрат­ный ОК и предохранительный П клапаны. Включение и выключение насоса происходит автоматически по раз­ности температур в КСЭ и аккумуляторе. На схеме так­же показаны система автоматического управлення (САУ), отопительные приборы (ОП), измерительные приборы— манометр М и термометры Т, линии холод­ной (ХВ) «горячей (ГВ) воды.

Работает ли гелиоустановка зимой?

Да. Но зимой поступление солнечной энергии невели­ко, продолжительность инсоляции короткая, а угол па­дения солнечных лучей мал. При этом КПД гелиоуста­новки низкий, а тепловая нагрузка отопления велика. Поэтому солнечная установка может обеспечить лишь небольшую долю всей тепловой нагрузки. Требуется до­полнительный источник теплоты — котел на обычном топливе. Наиболее эффективны зимой коллекторы, рас­положенные на вертикальных поверхностях или имею­щие большой угол наклона. Для защиты от замерзания используется антифриз.

Солнечный пруд

В солнечном пруду происходит одновременно улавли­вание и накапливание солнечной энергии в большом объеме жидкости. Обнаружено, что в некоторых естест­венных соленых озерах температура водЬҐу, дна может достигать 70 °С. Это обусловлено высокой концентраци­ей соли. В обычном водоеме поглощаемая солнечная энергия нагревает в основном поверхностный слой и эта теплота довольно быстро теряется, особенно в ночные часы и при холодной ненастной погоде из-за испарения воды и теплообмена с окружающим воздухом. Солнечная энергия, проникая через всю массу жидкости в солнеч­ном пруду, поглощается окрашенным в темный цвет дном и нагревает прилегающие слои жидкости, в результате чего температура ее может достигать 90—100 °С, в то время как температура поверхностного слоя остается на уровне 20 °С. Благодаря высокой теплоемкости воды в солнечном пруду за летний сезон накапливается боль­шое количество теплоты, и вследствие низких тепловых потерь падение температуры в нижнем слое в холодный период года происходит медленно, так что солнечный пруд служит сезонным аккумулятором энергии. Теплота к потребителю отводится из нижней зоны пруда.

Схема солнечного пруда и график изменения темпе­ратуры по его глубине даны на рис. 23. Обычно глубина пруда составляет 1—3 м. На 1 м2 площади пруда тре­

буется 500—1000 кг поваренной соли, ее можно заменить хлоридом магния.

Подпись: 1 2 3 Ч оО Рис. 23. Схема солнечного пруда (а) я изменение температуры (б) жидкости но высоте пруда:
image036

Наиболее крупный из существующих солнечных прудов нахо­дится в местечке Бейт-Ха-Арава в Израиле. Его площадь составляет 259000 м2. Он используется для производства электроэнергии. Элек­трическая мощность энергетической установки, работающей по цик­лу Ренкина, равна 5 МВт. Себестоимость 1 кВт-ч электроэнергии значительно ниже, чем на СЭС других типов. Удельная стоимость самого пруда составляет 24 руб/м2, а при площади в 1 млн. м* — всего в руб/м2.

1 — пресная вода; 2 — изолирующий слой с увеличивающейся кинзу концент-
рацией; J — слой горячего раствора; 4 — теплообменник

Описанный эффект достигается благодаря тому, что по глубине солнечного пруда поддерживается градиент концентрации соли, направленный сверху вниз, т. е. весь объем жидкости как бы разделен на три зоны, концент­рация соли в которых возрастает от поверхости к дну. Верхний тонкий слой (10—20 мм) практически пресной воды граничит с неконвективным слоем жидкости боль­шой толщины, в котором концентрация соли по глубине постепенно увеличивается и достигает максимального значения на нижнем уровне. Толщина этого слоя состав­ляет 2/з общей глубины водоема. В нижнем конвектив­ном слое концентрация солн максимальна и равномерно распределена в объеме жидкости. Итак, плотность жид­кости максимальна у дна пруда и минимальна у его по­верхности в соответствии с распределением концентра­ции соли. Солнечный пруд служит одновременно коллек­тором и аккумулятором теплоты и отличается низкой стоимостью по сравнению с обычными коллекторами сол-
вечной энергии. Отвод теплоты из солнечного пруда мо­жет осуществляться либо посредством змеевика, разме­щенного в нижнем слое жидкости, либо путем отвода жидкости из этого слоя в теплообменник, в котором цир­кулирует теплоноситель. При первом способе меньше на­рушается температурное расслоение жидкости в пруду, но второй способ теплотехнически более эффективен и экономичен.

Солнечные пруды могут быть использованы в гелио­системах отопления и горячего водоснабжения жилых и общественных зданий, для получения технологической теплоты, в системах кондиционирования воздуха абсорб­ционного типа, для производства электроэнергии.

Глава третья

СОЛНЕЧНЫЕ УСТАНОВКИ КОММУНАЛЬНО-БЫТОВОГО
НАЗНАЧЕНИЯ

СОЛНЕЧНЫЕ ВОДОНАГРЕВАТЕЛЬНЫЕ УСТАНОВКИ

На отопление, горячее водоснабжение и кондициони­рование воздуха в жилых, общественных и промышлен­ных зданиях расходуется 30—35 % общего годового энер­гопотребления.

Наиболее крупная солнечная система теплоснабжения в СССР построена в пансионате в г. Кастрополе (Крым), там суммарная площадь 1850 солнечных коллекторов’ равна 1600 м2. В целом по стране введено в действие более 50 демонстрационных и опытных солнечных уста­новок теплохолодоснабжения с суммарной площадью поверхности коллекторов более 10 000 м2. Стоимость плоских Солнечных коллекторов 50—75 руб. в расчете на 1 м2 площади лучевоспринимающей поверхности, а стои­мость всей системы теплоснабжения в 3—5 раз выше.

Максимальная суточная производительность плоско­го солнечного коллектора Братского завода равна 70— 100 л горячей воды на 1 м2 площади КСЭ в летний сол­нечный день, а годовая экономия топлива от применения солнечных систем теплоснабжения составляет 100 — 170 кг условного топлива на 1 м2 площади КСЭ в зави­симости от района страны, в котором установлены кол­лекторы.

Масштабы использования солнечной энергии зависят прежде всего от метеорологических условий — количест­ва солнечных дней в году, годового количества поступа­ющей солнечной радиации и его распределения по сезо­нам, температуры наружного воздуха и т. п. В районах, имеющих более 1800 ч солнечного сияния в год, целесо­образно использовать солнечную энергию для теплохо — лодоснабжения зданий. Солнечные водонагревательные установки получили довольно широкое распространение благодаря простоте их конструкции, надежности, быст­рой окупаемости.

Сейчас во всем мире в эксплуатации находится бо­лее 5 млн. солнечных водонагревательных установок, используемых в индивидуальных жилых домах, централи­зованных системах горячего водоснабжения жилых и об­щественных зданий, включая гостиницы, больницы, спор­тивно-оздоровительные учреждения и т. п. Налажено промышленное производство солнечных водонагревате­лей в таких странах, как Япония, Израиль, Кипр, США, Австралия, Индия, Франция, ЮАР и др.

По принципу работы солнечные водонагревательные установки можно разделить на два типа; установки с ес­тественной и принудительной циркуляцией теплоносите­ля. В последние годы все больше производится пассив­ных водонагревателей, которые работают без насоса, а следовательно, не потребляют электроэнергию. Они проще в конструктивном отношении, надежнее в эксплу­атации, почти не требуют ухода, а по своей эффективно­сти практически не уступают солнечным водонагрева­тельным установкам с принудительной циркуляцией. Бо­лее половины пассивных водонагревателей составляют установки термосифонного типа с естественной циркуля­цией, а остальные—это компактные водонагреватели, в которых бак-аккумулятор горячей воды и коллектор солнечной энергии объединены (интегрированы) в еди­ное компактное устройство.

Водонагреватели с естественной циркуляцией воды. Принцип работы солнечной водонагревательной установ­ки термосифонного типа с естественной циркуляцией теп­лоносителя иллюстрируется схемой, показанной на рис. 24, а. Установка содержит коллектор солнечной энергии, бак-аккумулятор горячей воды, подъемную тру­бу и опускную трубу. В нижнюю часть бака-аккумулято­ра подводится холодная вода (ХВ), и из его верхней ча­сти отводится к потребителям горячая вода (ГВ). Пере-

Рис. 24. Схема (а) и конструкция
(б) солнечного водонагревателя
с естественной циркуляцией:

image037

image038

а: 1 — солнечный коллектор; 2 — бак — аккумулятор горячей воды; б: / — термостат; 2 — горячая вода; 3 бак горячей воды; 4 — расширитель* ный бак; 5 — горячий теплоноситель? 6 — теплообменник; 7 — подвод" холод­ной воды; 8 — обратная труба; 9 — коллектор; 10 — электронагреватель

численные элементы образуют контур естественной цир­куляции воды. По подъемной трубе горячая вода из кол­лектора солнечной энергии поступает в бак-аккумулятор, а по опускной трубе из бака в коллектор поступает бо­лее холодная вода для нагрева за счет поглощенной сол­нечной энергии. Поскольку средняя температура воды в подъемной трубе выше, чем в опускной, плотность во­ды, напротив, ниже во второй трубе. И вследствие этого возникает разность давлений (Па), вызывающая движе­ние воды в контуре циркуляции:

Ар = gH (рх — р2),

где g —ускорение свободного падения, равное для рав­нинных районов 9,81 м/с2; Н — разность отметок низа солнечного коллектора (нулевой уровень) и места под­вода горячей воды в бак-аккумулятор, м; pt — плотность воды в опускной трубе при температуре Tt, кг/м3; р2 — плотность воды в подъемной трубе при температуре Тг, кг/м*.

Очевидно, что чем больше разность температур воды, тем больше разность давлений и интенсивнее движение вбды. Аналогичное влияние оказывает увеличение раз­ности отметок Я.

Непременным условием эффективной работы солнеч — йой водонагревательной установки термосифонного типа является тепловая изоляция всех нагретых поверхно­стей— прежде всего бака-аккумулятора, подъемной и опускной труб, патрубка для отвода горячей воды к во­доразборным кранам или душу и воздушника. Толщина тепловой изоляции бака должна быть 50—75 мм при ис­пользовании минеральной ваты или другого материала с коэффициентом теплопроводности 0,04-н9,045’Ві’/{м. К), а для трубопроводов-—от 25 мм Для опускной трубы до 50 мм для подъемного и соединительных трубопроводов. Точка присоединения подъемной трубы к баку-аккуму­лятору должна находиться в верхней части. бака на рас­стоянии не менее % высоты бака от его днища, а патру­бок для подпитки холодной воды следует присоединять к нижней части бака. При необходимости исполь&ва — ния электронагревателя для догрева воды внутри бака — аккумулятора его необходимо располагать горизонталь­но и размещать в верхней части бака. При соблюдении указанных условий обеспечивается температурное рас­слоение (стратификация) жидкости по высоте бака, при этом температура воды в нижней части бака ниже, чем в верхней. Благодаря этому в коллектор поступает вода с невысокой температурой, КПД коллектора возрастает и солнечная энергия используется более эффективно.

Более высокое положение бака-аккумулятора относи­тельно коллектора солнечной энергии в водонагреватель­ных установках термосифонного типа имеет важное зна­чение не только для обеспечения циркуляции теплоноси­теля в дневное время (на схеме направление движения— по часовой стрелке), но также и для предотвращения циркуляции воды в обратном направлении—против ча­совой стрелки — в ночное время. Это возможно прн низ­

ком положении бака, когда горячая вода из верхней части бака ночью поступает в коллектор, там она охлаж­дается за счет излучения энергии в окружающее прост­ранство и конвекции и возвращается в нижнюю часть бака. Естественно, это нежелательный процесс, так как он вызывает потери энергии, и для его предотвращения бак-аккумулятор должен быть установлен так, чтобы его днище было выше верхней отметки наклонного кол­лектора солнечной энергии на 300—600 мм.

Солнечные водонагревательные установки с естест­венной циркуляцией теплоносителя являются саморегу­лирующимися системами, и расход жидкости в них пол­ностью определяется интенсивностью поступающего сол­нечного излучения, а также теплотехническими и гид­равлическими характеристиками солнечного коллектора, бака-аккумулятора и соединительных трубопроводов.

В условиях холодного климата в солнечном коллек­торе следует использовать незамерзающий теплоноси­тель— смесь воды с этилен — или пропиленгликолем, гли — зантин (смесь воды С глицерином) и др. В этом случае схема становится ДЭУХконтурной. Пример конструктив­ного выполнения водонагревателя с антифризом в кон­туре коллектора Показан на рис. 24, б. Теплота, получен­ная незамерзающим теплоносителем в коллекторе, пере­дается воде посредством теплообменника, размещенного в нижней части бака-аккумулятора. По санитарно-гиги­еническим нормам вода должна быть надежно защище­на от попадания теплоносителя, содержащего токсичес­кие вещества.

Возвращаясь к рассмотрению компактных интегри­рованных водонагревателей, обратим внимание на исход­ную конструкцию, схематически показанную на»рис. 25, а. В теплоизолированном корпусе с остекленной верхней крышкой 2 размещена, емкость 3 с черной или селектив­ной наружной поверхностью. Для подвода холодной и от­вода горячей воды предусмотрены патрубки. Эффектив­ность водонагревателя можно повысить с помощью от­ражателя, имеющего специальную форму и помещенного внутри корпуса (рис. 25, б). КПД компактных водона­гревателей достигает 60%. На рис. 26 и 27 показана конструкция компактного водонагревателя с. солнечным коллектором, выполненным из тепловых труб с надеты­ми на них с помощью пружинящих прижимов плоскими ребрами, имеющими селективное покрытие в виде фоль — ги, приклееваемой к ребрам. Теплота от абсорбера кол­лектора передается баку-аккумулятору контактным способом с помощью листа, приваренного к ребрам и со­прикасающегося со всей поверхностью днища бака. Пло­щадь солнечного коллектора составляет всего 1,4—1,6 м2, объем аккумулятора равен 60—100 л, КПД водонагре­вателя равен 60 %. Благодаря применению тепловых труб эффективность теплообмена достаточна высока, и вода,

5

image039

Рис. 25. Компактный солнечный водонагреватель емкостного тнва:

а — с одной или несколькими емкостями с водой; 6 — с отражателем солнеч­ной энергии: /—корпус; 2— остекление; 3 — емкость; 4 — подвод холодной воды; 5 — отвод горячей воды; 6 — отражатель

поступающая в бак, нагревается за счет теплоты, под­водимой от коллектора с помощью контактного листа. В этом случае полностью исключается возможность за­грязнения воды рабочей жидкостью, находящейся в теп­ловых трубах.

Водонагревательные установки .с принудительной циркуляцией. Установки с принудительной циркуляцией теплоносителя целесообразно использовать для горячего водоснабжения крупных объектов. В них солнечный кол­лектор представляет собой большой массив модулей КСЭ. Эти установки имеют большую теплопроизводи — тельность, но, как правило, они довольно сложны. Прин-

image040

Рис. 26. Компактный солнечный водонагреватель:

/ — корпус; 2 — остекление; 3 ‘— теплоизоляция; 4 — тепловая труба; S — реб­ро; 5 — бак: 7 — контактный лист

image041

Рис. 27. Типичная конфигурация бака-аккумулятора компактного водонагревателя;

/ — автоматический воздушный клапан; 2 — подвод воды через поплавковый
клапан; 3 — вода в коллектор; 4 — нагретая вода из коллектора; 5 — горячая
вода к потребителям

ципиальная схема установки с циркуляцией воды в кон­туре КСЭ с помощью насоса подачей холодной воды в бак-аккумулятор и регулированием температуры горя­чей воды, поступающей к потребителю, путем подмеши­вания холодной воды в смесительном клапане показана на рис. 28.

В холодном климате, как правило, применяются двух­контурные схемы водонагревательных установок (рис. 29). В первом контуре, состоящем из солнечного коллек­тора и теплообменника с циркуляционным насосом и рас-

Подпись: Ц / — солнечный коллектор; 2 — бак-аккумулятор; 3 — насос; 4 — клапан; ХВ а ГВ — холодная и горячая вода

ширительным баком, используется незамерзающий теп­лоноситель. Второй контур образуют бак-аккумулятор, тецлобменник и электрический или газовый котел. Хо­лодная вода подводится в нижнюю часть бака-аккумуля­тора, а вода, нагретая в теплобменнике, поступает в верхнюю часть бака, а оттуда через автоматический смесительный клапан и котел подается к потребителям. Все оборудование, кроме солнечного коллектора, уста­навливаемого снаружи, размещается в здании, поэтому

подобные системы могут эксплуатироваться и в холод­ный период года. Газовый котел предназначен для дове­дения температуры горячей воды, предварительйО нагре­той за счет солнечной энергии, до требуемого значения. При отсутствии солнечной радиации или недостаточном ее поступления вся тепловая нагрузка горячего водо­снабжения Обеспечивается газовым котлом.

Солнечные водонагреватели могут использоваться в качестве первой ступени для предварительного подо­грева воды в обычных топливных системах горячего во­доснабжения жилого здания.

Для достижения высокой эффективности всей геяио — топливной системы горячего водоснабжения следует из­бегать смещения горячей и холодной жидкости в баке — аккумуляторе, для чего в нем необходимо поддерживать

температурное расслоение (стратификацию) жидкостц. Горячая жидкость имеет меньшую плотность, чем холод­ная, и поэтому она находится в верхней части бака, а тем­пература в нем уменьшается сверху вниз. Жидкость по­дается в солнечный коллектор из нижней части бака, где она имеет наиболее низкую температуру, и благодаря этому обеспечивается более высокий КПД коллектора. Нагретая жидкость из коллектора подается в верхнюю

image043

Рис. 29. Двухконтурная схема солнечной водонагревательной уста­новки:

I — солнечный коллектор; 2 — теплообменник; 3 — аккумулятор горячей воды*
4 —дублер (газовый котел); 5 —насос; 6 — расширительный бак; / — автома-
тический смесительный клапан; ХВ и ГВ — холодная и горячая вода

зону бака. Для обеспечения температурной стратифика­ции жидкости в баке можно, в частности, использовать перфорированные горизонтальные перегородки,. разделя­ющие бак на две или несколько зон и предотвращающие перемешивание слоев жидкости с разными температу­рами. Отводить горячую воду к потребителю необходи­мо из верхней части бака, где также можно установить электронагреватель, который будет обеспечивать требу­емую температуру горячей воды при любых погодных условиях. Однако наилучшим решением является исполь­зование двух баков-аккумуляторов — одного с высокой, температурой жидкости, а второго — с низкой.

По экономическим соображениям за счет солнечной энергии целесообразно покрывать до 80 % нагрузки го­рячего водоснабжения, поэтому необходимо использовать наряду с коллектором солнечной энергии (КСЭ) также

Подпись: Рис. 30. Схемы,, подвода теплоты от дополнительного источника энергии
Подпись: ГВ.

дополнительный источник энергии (ДИЭ). На рис. 30 показаны различные схемы подвода энергии от ДИЭ: 1) непосредственно в бак-аккумулятор (АТ); 2) к горя­чей воде (ГВ) на выходе из бака-аккумулятора или 3) к холодной воде (ХВ) на байпасной линии. В качестве ДИЭ может использоваться электронагреватель или топ­ливный котел. Циркуляция теплоносителя в контуре КСЭ осуществляется насосом Я. Изменение эффективности

системы в зависимости от применяемого способа подво­да дополнительной энергии связано со средним уровнем температуры воды в коллекторе. При подводе дополни­тельной энергии непосредственно в бак-аккумулятор (рис. 30, а) повышается средняя температура теплоноси­теля в коллекторе, а следовательно, снижается его КПД и теплопроизводительность и в результате увеличивает­ся потребление дополнительной энергии. Это означает, что солнечная энергия используется недостаточно эф­фективно. Наилучшим образЬм солнечая энергия исполь­зуется при последовательной схеме подключения дубли­рующего источника энергии (рис. 30, б). В этом случае вода предварительно подогревается за счет солнечной энергии до сравнительно невысокой температуры, поэто­му средний уровень температуры теплоносителя в кол­лекторе низкий, а КПД и теплопроизводительность кол,- лектора максимальны. Схема подвода дополнительной

энергии в холодной воде в байпасной линии (рнс. 30, в) наименее удачна, так как при этом недостаточно полно используется солнечная энергия из-за того, что часть во­ды вообще не нагревается ею, а поступает сразу в топ­ливный дублер. Что же касается КПД и геплопроизводн — тельности самого коллектора, то в этом отношении дан­ная схема аналогична второй схеме.

Можно дать следующие рекомендации относительно, схемного решения комбинированных солнечно-топлив­ных установок горячего водоснабжения. Во-первых, не­обходимо обеспечивать улавливание максимально воз­можного количества солнечной энергии, что достигается, снижением среднего уровня температуры теплоносителя в коллекторе н использованием эффективного коллекто­ра. Во-вторых, следует исходить из того, что солнечная энергия должна использоваться для предварительного подогрева теплоносителя, в то время как дополнитель­ный источник энергии (топливо или электроэнергия) — для доведения теплоносителя до требуемой температуры. При таком подходе обеспечивается максимальная эко­номия топлива благодаря наиболее эффективному ис­пользованию солнечной энергии. В-третьих, необходимо избегать смешения сред с различными уровнями темпе­ратуры в аккумуляторе теплоты, в частности с этой точки зрения не рекомендуется размещать электрона­греватель в нижней части бака-аккумулятора или осу­ществлять подвод4 теплоты от дублера непосредственно в бак-аккумулятор гелиоустановки. Как минимум, верх­няя часть бака, где размешается дублер, должна быть отделена перфорированной перегородкой от нижней, в которую подводится теплота от солнечного коллекто­ра. Оптимальным решением является использование двух баков — одного с низкой температурой теплоносителя, обеспечиваемой солнечным нагревом, а второго с высо­кой температурой, обеспечиваемой дублером.

В настоящее время успешно эксплуатируются уста­новки горячего водоснабжения для сезонных потребите­лей. Так, гелиоустановка в подмосковном пионерлагере «Звездочка» дает 7,5 т горячей воды в день. Ряд уста­новок построен ПО «Спецгелиотепломонтаж» (г. Тби­лиси) на курортах Грузии. Потенциальные масштабы использования сезонных установок горячего водоснаб­жения в СССР соответствуют общей площади поверх­ности солнечных коллекторов 250 млн. м2, при этом ожн —

даемая экономия топлива оценивается в 40 млн. т услов­ного топлива в год.

На рис. 31 показана схема душевой кабины, выпуска­емой ПО «Моссантехконструкция». Она изготовляется из асбоцементных плит. Ее габариты 1850X1900X XI150 мм. Коллектор площадью 2 м2 и бак вместимос­тью 100 л размещены на крыше. К сожалению, кабина имеет большую массу, которая без воды в системе со-

image046

Рис. 31. Схема душевой кабины:

і — коллектор; 2 — 6ак горячей воды; 3 —душ; 4, 5 — трубы; 6, 7 — вентили; 8 — кран переключения; 9 — водопровод

ставляет 360 кг. За один летний день в Подмосковье можно получить от 120 до 160 л воды с температурой 40 °С, а за се"зон с апреля по сентябрь можно получить экономию в 400—700 кг условного топлива.

Для индивидуальных потребителей следует рекомен­довать использовать водонагреватели с естественной циркуляцией воды или компактные устройства, посколь­ку они имеют хорошую эффективность при невысокой це­не и просты в конструктивном отношении, а следователь­но, и надежны.

СИСТЕМЫ СОЛНЕЧНОГО ТЕПЛОСНАБЖЕНИЯ ЗДАНИЙ

В СССР для теплоснабжения зданий расходуется зна­чительная часть всех потребляемых топливно-энергети­ческих ресурсов. Использование солнечной энергии для этих целей позволит получить существенную экономию. Уже сейчас в различных районах южной части нашей страны эксплуатируются опытные солнечные установки теплоснабжения зданий, в перспективе масштабы внед­рения систем солнечного отопления будут более значи­тельными.

Различают активные и пассивные системы солнечного теплоснабжения зданий. Характерным признаком актив­ных систем является наличие коллектора солнечной энер­гии, аккумулятора теплоты, дополнительного источника энергии, трубопроводов, теплообменников, насосов или вентиляторов и устройств для автоматического контро­ля и управления. В пассивных системах роль солнечного коллектора и аккумулятора теплоты обычно выполняют сами ограждающие конструкции здания, а движение теплоносителя (воздуха) осуществляется за счет есте­ственной конвекции без применения вентилятора. В стра­нах ЕЭС в 2000 г. пассивные гелиосистемы будут давать экономию 50 млн. т нефти в год.

Гелиосистема теплоснабжения может работать эф­фективно только в том случае, если при разработке кон­струкции самого здания учтены требования, направлен­ные на снижение потребности в тепловой энергии. Это лучше всего достигается в так называемых сверхизоли­рованных домах, имеющих хорошую тепловую изоля­цию стен, потолка, пола и практически герметичную кон­струкцию наружных ограждений. В таких домах коэф­фициент теплопотерь для стен составляет всего 0,15 Вт/ /(м2-°С), а неконтролируемая естественная инфильтра­ция наружного воздуха в здание характеризуется чрез­вычайно низкой кратностью воздухообмена (0,1 ч-1). Требуемое качество воздуха внутри помещений обеспе­чивается за счет регулируемой вентиляции (не менее 0,5 */ч воздухообмена в час) с утилизацией теплоты уда­ляемого воздуха. Общий коэффициент теплопотерь в та­ких зданиях лежит в пределах 0,7—1,2 Вт/(м2-К). Теп — лопотери здания частично компенсируются за счет теп­ловыделения людей, электробытовых и осветительных приборов и оборудования, которое уменьшает тепловую

нагрузку отопления примерно на 7з — Общий эффект сверх­изоляции зданий состоит в сокращении. длительности отопительного периода и снижении суммарного годово­го расхода теплоты. Благодаря этому уменьшается про­должительность периода работы гелиосистемы и повы­шаются ее технико-экономические показатели, а также годовая доля солнечной энергии в покрытии тепловой на­грузки. Одновременно снижается пиковая нагрузка ото­пления и в результате этого уменьшается требуемая мощ­ность дополнительного (резервного) источника энергии. Распределение теплоты между отдельными комнатами, может осуществляться путем естественной конвекции воздуха через открытые двери.

Второй подход к снижению тепловых потерь зданий состоит в использовании высокоэффективных окон, на­пример со специальными покрытиями на стекле или по­лимерных пленках, расположенных между двумя слоями стекла. Могут использоваться покрытия, обеспечивающие высокую пропускательную способность по отношению к солнечной энергии, и покрытия с низкой излучатель­ной способностью для теплового излучения. При приме — .нении таких окон температура внутренней поверхности повышается и благодаря этому уменьшается конденса­ция водяных паров на стенде и увеличивается ощущение комфорта. Применение специальных окон, герметичных рам е вакуумированным зазором между двумя слоями остекления наряду с уменьшением теплопотерь также снижает уровень проникающего шума.

Итак, в зданиях, в которых предусматривается эффек­тивное использование солнечной энергии, должен быть обеспечен высшей уровень сохранения энергии, особен­но в условиях холодного климата. При этом мощность гелиосистемы и дополнительного источника энергии, а также их размеры и стоимость будут минималь­ными.

Пассивные гелиосистемы отопления зданий. Для ото­пления зданий используются следующие типы пассивных гелиосистем:

с прямым улавливанием солнечного излучения, посту­пающего через остекленные поверхности большой пло­щади на южном фасаде здания (рис. 32, а) или через примыкающую к южной стене здания солнечную тепли­цу (зимний сад, оранжерею) (рис. 32, б);

с непрямым улавливанием солнечного излучения, т. е.

с теплоаккумулирующей стеной, расположенной за осте­клением южного фасада (рис. 32, в);

с контуром конвективной циркуляции воздуха и галеч­ным аккумулятором теплоты. Дом с такой системой по­казан на рис. 33. Кроме того, могут использоваться гиб­ридные системы, включающие элементы пассивной и ак­тивной гелиосистемы.

image047

Пассивные системы составляют интегральную часть самого здания, которое должно проектироваться таким образом, чтобы обеспечивать наиболее эффективное ис­пользование солнечной энергии для отопления. Наряду с окнами и остекленными поверхностями южного фасада для улавливания солнечного излучения также использу­ются остекленные проемы в крыше и дополнительные окна в верхней части здания, которые повышают уровень комфорта человека, так как исключают, прямое попада­ние солнечных лучей в лицо. Одно из важнейших усло­вий эффективной работы пассивной гелиосистемы заклю­чается в правильном выборе местоположения и ориента­ции здания на основе критерия максимального поступ­ав

ления и улавливания солнечного излучения в зимние ме­сяцы.

Пассивные системы просты, но для их эффективной работы требуются регулирующие устройства, управляю­щие положением тепловой изоляции светопрозрачных по­верхностей, штор, заслонок в отверстиях для циркуляции воздуха в теплоаккумулирующей стене и т. п.

Прямое улавливание солнечной энергии может эффек­тивно осуществляться при соблюдении следующих усло-

image048

Рис. 33. Солнечный дом с прямым улавливанием солнечной анергин, конвективным контуром для нагрева воздуха и аккумулированием теплоты в слое камней:

/ — солнцезащитное устройств»: ? — воздушный коллектор) $ — чериЫй метал­лический лист: 4 — капая; 6 — возврат воедуха; S — регулирование поток*

воздуха; 7 — свежий воздух; < — теплый воздух

вйй: 1) оптимальная ориентация дома — вдоль оси вос­ток— запад или с отклонением до 30° от этой оси; 2) на южной стороне дома должно быть сосредоточено не Ме­нее 50—70 % всех окон, а на северной —не более 10 %, причем южные окна должны иметь двухслойное остекле­ние, а северные окна—трехслойное; 3) здание должно иметь улучшенную тепловую изоляцию и низкие тепло — иотери вследствие инфильтрации наружного воздуха;

4) .внутренняя планировка здания должна обеспечивать расположение жилых комнат с южной стороны, а вспо­могательных помещений — с северной; 5) должна быть обеспечена достаточная теплоаккумулирующая способ­ность внутренних стен и пола для поглощения и акку­мулирования теплоты солнечной энергии; 6) для предот­вращения перегрева помещений в летний период над окнами должны быть предусмотрены навесы, козырьки и т. п. КПД такой системы отопления, как правило, со­ставляет 25—30%, но в особо благоприятных климати­ческих условиях может быть значительно выше и дости­гать 60 %. Существенным недостатком этой системы являются большие суточные колебания температуры воз­духа внутри помещений.

Пассивные системы прямого улавливания солнечной энергии имеют наименьшую стоимость для вновь стро­ящихся зданий. Пассивные системы вообще имеют такой же срок службы, как и само здание, и весьма низкие текущие эксплуатационные расходы. Использование си­стемы прямого улавливания солнечной энергии в суще­ствующих зданиях связано со значительными трудно­стями, поэтому их применение в этих случаях нецелесо­образно.

Наряду с получением теплоты эти системы также обеспечивают эффективное использование дневного ос­вещения, благодаря чему снижается потребление элек­троэнергии. Однако площадь остекления южного фаса­да должна быть значительной, чтобы обеспечить требу — ‘ емую долю солнечной энергии в покрытии тепловой нагрузки, а теплоаккумулирующие элементы (тепловая масса) должны быть размещены, в наиболее благоприят­ных местах, чтобы на них попадали солнечные лучи большую часть дня. Следует избегать излишнего пере­грева тех зон здания, где постоянно находятся люди, а также попадания в них прямых солнечных лучей-, «сол­нечных зайчиков» и бликов. Вместо остекления верти­кальных стен или наряду с ним может быть использо­вано остекление элементов крыши и чердачных помеще­ний, сообщающихся с жилыми помещениями. При этом облегчается задача размещения теплоаккумулирующих элементов, меньше возникает «солнечных зайчиков» и уменьшается затенение тепловой массы предметами интерьера и экстерьера.

Важнейшее требование, предъявляемое к пассивным

системам, состоит в необходимости обеспечения теплово­го комфорта и регулирования температурного режима в помещениях. В помещениях с пассивным использова­нием солнечной энергии комфорт обеспечивается при бо­лее низких температурах воздуха по сравнению с обыч­ными зданиями,’ так как температура всех или большин­ства внутренних помещений выше температуры воздуха и они излучают теплоту на человека, отчего ощущение комфорта повышается.

Однако при использовании пассивных систем прямо­го улавливания солнечной энергии трудно поддается ре­гулированию температура воздуха в помещениях из-за большой тепловой инерции их теплоаккумулирующих элементов. Национальное проецирование Температурно — го режима помещений предполагает оптимизацию мас­сы и размещения каждого из этих элементов, а также использование навесов и козырьков, тепловой изоляции светопрозрачных поверхностей в ночное время, автомати­чески управляемых заслонок для организации поступле­ния и удаления воздуха, закрытия и открытия окон, фор­точек и фрамуг и т. п.

В этих системах используются окна и остекленные по­верхности большой площади в проемах стен на южной стороне дома. Площадь остекления определяется тепло­вой нагрузкой отопления и площадью отапливаемых по­мещений. Для уменьшения тепловой нагрузки здание должно быть построено с применением улучшенной теп­ловой изоляции и использованием других мероприятий по сохранению энергии. Этой цели служит также исполь­зование тепловой изоляции светопрозрачных наруж­ных поверхностей в ночное время, ДЛЯ чего могут ис­пользоваться теплоизоляционные Щиты, ставни, плотные шторы и т. п. В доме, показанном на рис. 33, предус­мотрено прямое улавливание солнечной энергии, а так­же имеется контур естественной конвективной циркуля­ции воздуха, нагретого в коллекторе, с аккумулирова­нием теплоты в слое гальки и регулированием движения воздуха с помощью клапана, а также солнцезащитное устройство.

Пассивные гелиосистемы с остекленной теплоаккуму­лирующей южной стеной (стеной Тромба), окрашенной в черный или иной темный цвет, отличаются достаточно высокой эффективностью и могут иметь несколько вари­антов конструктивного исполнения. Исходным вариан­

том является остекленная южная бетонная или камен­ная стена темного цвета, не имеющая отверстий для циркуляции воздуха. Проникающее через одно — или двух­слойное остекление солнечное излучение поглощается поверхностью стены, покрашенной темной матовой крас­кой, и аккумулируется в массе стены, что вызывает по­вышение ее температуры. Аккумулированная днем теп­лота передается с некоторым запаздыванием внутрь помещений посредством излучения и конвекции. При толщине бетонной стены 200 мм запаздывание составля­ет 5 ч.

Более совершенной является конструкция стены с отверстиями на нижнем и верхнем уровнях для циркуля­ции воздуха. При этом существенно, улучшается переда­ча теплоты в помещения. Регулирование движения воз­духа можно осуществлять с помощью поворотных засло­нок. Может также использоваться вентилятор небольшой мощности. При использовании пассивной гелиосистемы с теплоаккумулирующей стеной Тромба расстояние меж­ду нею и внутренней стеной здания ограничено, так как эффект лучистого отопления распространяется на рас­стояние 5—7 м. Бетонная или каменная теплоаккумули­рующая стена может быть заменена на так называемую водяную стену, состоящую из установленных друг на друга резервуаров (бочек) с водой, причем эта сиетема даже более эффективна (КПД достигает 35 %), посколь­ку вода имеет высокую удельную теплоемкость. Однако этот тип пассивных систем, не подходит для районов с холодным климатом с преобладанием пасмурных дней в зимний период.

Разрез дома с пассивной системой отопления и гра­вийным аккумулятором, расположенным под домом, по­казан на рис. 34. В системе предусмотрены остекленная теплоаккумулирующая стена южного фасада, наклонные окна большой площади в верхней части дома, теплоизо­ляция северной стены и клапан, перекрывающий осте­кление в ночное время. Распределение теплоты осуще­ствляется за счет естественного движения нагретого воз­духа.

Система с гелиотеплицей (зимним садом, солярием или оранжереей), примыкающей к южной стене здания, может иметь КПД около 60—75 %, но в здание поступа­ет всего лишь 10—30% количества солнечной энергии, падающей на остекление теплицы.

При значительной доле диффузного излучения КПД этой системы на 5—10 % выше, чем КПД системы прямо-1 го улавливания солнечной энергии. При этом следует применять двух-трехслойное остекление теплицы в соче­тании с окнами в примыкающей стене здания. Площадь остекления теплицы должна быть в 1—3 раза больше площади окон жилого дома. В гелиотеплице должно быть предусмотрено аккумулирование энергии в тепловой мас­се (бетонная плита или балка в полу и т. п.). Площадь

image049

Рис. 34. Солнечный дом с гравийным аккумулятором теплоты:

/ — остекление} 2 — теплоизоляция; 3 — окно; 4 — насыпь; 5 — гравий; б — кух­ня: 7 —клапан

остекления теплицы должна быть равна, площади. по­верхности тепловой массы в полу, а отношение площадей тепловой массы в жилом здании и в гелиотеплице (оран­жерее) должно быть в пределах 0—1. Стена, отделяю­щая гелиотеплицу (зимний сад, оранжерею) от жилого помещения, может представлять собой теплоизолирован­ную массивную стену толщиной 100—150 мм, причем 25— 45 % площади этой стены должно быть занято окном. Доля остекления восточной и западной стен гелиотеп­лицы (оранжереи) должна быть не более 0,1 общей пло­щади пола гелиотеплицы (оранжерей). Не следует ис-

П

пользовать наклонные остекленные поверхности в оран­жерее, так как при этом труднее регулировать тепловой режим. Поскольку пол гелиотеплицы (оранжереи) —это основная тепловая масса, ее следует проектировать с уче­том таких рекомендаций:

стена фундамента гелиотеплицы (оранжереи) дол­жна быть теплоизолирована;

пол и тепловая масса в нем должны быть тепло — и гид — роизолированы для защиты от грунтовых вод;

нижний уровень остекления оранжереи должен иметь отметку 0,15 м от уровня пола для обеспечения хороше­го освещения и зарядки теплоаккумулирующей массы.

Поглощательная способность а пола должна быть как можно выше, для чего его следует красить в темный цвет (для неокрашенного бетонного пола а=0,65). На полу не должно быть ковра или половиков, и допускается ми­нимальное его затенение предметами мебели, 15—25 % площади пола может быть занято растениями или дорож­ками. Температура в оранжерее должна быть не выше 25—28 °С зимой и 20—25 °С летом, а при понижении температуры до 7—13 °С должно включаться дополни­тельное отопление.

Для улучшения распределения теплоты в жилом по — мещеции должны быть предусмотрены четыре отверстия в стене, обеспечивающие расход воздуха около 0,1 м3/с.

Для северных районов СССР представляет определенный инте­рес опыт скандинавских стран в разработке пассивных гелиосистем отопления зданий. В традиционной архитектуре Швеции применяют­ся небольшие и тщательно теплоизолированные индивидуальные жилые дома с окнами небольшой площади, ориентированными на юг, восток и запад, и печным отоплением. Современный шведский стандарт определяет следующие значения коэффициентов теплопо — терь для различных наружных ограждений здания:

для стен К=0,3 Вт/м2-°С), что обеспечивается при использова­нии тепловой изоляции из минеральной ваты толщиной 130 мм;

для потолка (крыши) и пола /(=0,2 Вт/(м2-°С) при толщине слоя минеральной ваты 200 мм;

для окон Я=2 Вт/(м2-°С) —-тройное остекление.

Построенный в соответствии с этим стандартом шведский дом среднего размера для одной семьи имеет годовое энергопотребление 15—20 МВт-ч, включая расход теплоты на отопление и горячее во­доснабжение, а также расход электроэнергии. Это эквивалентно рас­ходу 1,6—2 м3 мазута. Дом располагают так, чтобы его светопро­зрачные поверхности не затенялись в холодный период года. Те помещения, в которых люди находятся большую часть суток, распо­лагают на южной стороне здания. Общая площадь окон—менее 15 % площади стен. В неотопительный период необходимо предотвращать попадание солнечных лучей в здание, для этого используют навесы (козырьки) или выступы крыши, спроектированные так, чтобы про­пускать внутрь здания максимум солнечного излучения весной и осенью и сводить к минимуму попадание прямых солнечных лучей летом.

Можно испЬльзовать естественную вентиляцию, но поступление воздуха в помещение можно также регулировать с помощью при­строенной к южндй стене здания гелиотеплицы (зимнего сада, оран­жереи), в которой наружный воздух зимой подогревается, а удале­ние воздуха из помещений регулируется.

Естественно, в зимний период требуется энергия от дополни­тельного топливного источника из аккумулятора теплоты.

Дома с пассивными системами отопления могут строиться на различных ширбтах. Примером может служить группа домов, по­строенных в Швеции.

Двухэтажные жилые дома на 16 квартир в г. Карльстаде (59° с. Ш.) были построены в 1984 г. и расположены так, чтобы не было взаимного затенения. Каждый дом поставлен на бетонное основание толщиной 150 мм с тепловой изоляцией, а стены сделаны из дерева. Дом |мёеТ гелиотеплицу с двойным остеклением. Коэффициент теп- лопотерь’равен для стен К = 0,12 Вт/(м2-°С) (толщина слоя мине­ральной ваты 6=360 мм), для пола /(=0,12 Вт/(м2-°С) (6=220 мм), для ирыши К=0,08 Вт/(м2-°С) (6=550 мм), для окон с тройным обтеклейием и отражающей металлической фольгой Д= = 1,4 Вт/(м2-°С). Воздухообмен осуществляется с помощью вентиля­тора, и система вентиляции объединена с отоплением. Кратность воздухообмена-равна 0,5 1/ч. Зимой наружный воздух проходит че­рез гелиотеплицу. В теплый период года (с мая+№ сентябрь) окна полностью защищены от попадания солнечных лучей с помощью Пыртупрв крыши. Дома потребляют очень мало энергии—27 кВтч/м4 В?6д. Для отопления дома с жилой площадью І00 м2 требуется 270 Дж ид кого топлива в год.

Реализуется совместный шведско-западногерманский проект строительства двух жилых домов на 11 квартир каждый в городах Ийгод^штадт (ФРГ) и Хальмстаде (Швеция), расположенных на шйрбте 48,8° и 56,7° с. ш. Среднегодовая температура наружного воз­духа +7,9 и +7,2 X, а его расчетная температура —16°С.

В обоих случаях используется тяжелая бетонная конструкция здания, южная ориентация, остекление южной стены, гелнотеплица, защита от солнечного излучения летом с помощью выступающей кр]^шй, Коэффициенты теплопотерь равны для стен 0,2, для окон 1,4, для’ крыши 0,11 и для пола 0,12 Вт/(м4-К). Основание дома — бетон­ная плита на земле, несущие конструкции — из бетона, остальные— нз дерева. Отопление — водяное от газового (электрического) котла. Вентиляция — механическая с утилизацией теплоты удаляемого воз­духа с помощью теплового насоса. Площадь отапливаемых помеще­ний 934 м2, годовое потребление энергии для отопления 33 000 кВт-ч, удельное потребление теплоты 35 кВт-ч/м2 в год.

Рациональное использование дневного освещения. Но­вое достижение в области пассивного использования сол­нечной энергии—это такие архитектурно-планировочные И конструктивные решения здания, благодаря которым Обеспечивается максимальное использование днев — ного освещения и, следовательно, сокращаются затраты на искусственное освещение, особенно в летнее время. На достижение этой же цели направлено введение летне­го времени. Кроме того, в жарком климате переход на максимальное использование дневного света существен­но уменьшает тепловую нагрузку на систему кондицио­нирования воздуха. Благодаря применению волоконных световодов естественное освещение может быть обеспе­чено также для подземных сооружений.

Регулирование количества света, проходящего через остекление, может быть осуществлено при использова­нии окрашенного стекла или специального стекла, на которое накладывается небольшое электрическое напря­жение и благодаря этому регулируется его пропускатель — ная способность по отношению к солнечному свету. При­менение жидкокристаллических пленок в сочетании с электрическим напряжением обеспечивает переход от прозрачного стекла к полностью непрозрачному.

Активные гелиосистемы отопления знаний. В состав активной системы солнечного отопления входят коллек­тор солнечной энергии, аккумулятор теплоты, дополни­тельный (резервный) источник энергии, теплообменники для передачи теплоты из КСЭ в аккумулятор и из по­следнего к потребителям, насосы или вентиляторы, тру­бопроводы с арматурой и комплекс устройств для авто­матического управления работой системы.

В зависимости от вида теплоносителя в контуре КСЭ различают жидкостные и воздушные гелиосистемы теп­лоснабжения. Теплоносителем в КСЭ может быть жид­кость (вода, 40—60 %-ный водный раствор этилен — или пропиленгликоля, органические теплоносители и др.) или газ (воздух). Использование воздуха позволяет исклю­чить проблемы замерзания и коррозии, несколько сни­зить вес установки, но теплотехнически воздушные системы менее эффективны, чем жидкостные. В большин­стве эксплуатируемых гелиосистем теплоносителем слу­жит вода или антифриз. При этом КПД КСЭ выше, но существует опасность замерзания и коррозии, протечек теплоносителя, его перегрева. Теплота в здании распре­деляется с помощью вентилятора и воздуховодов в воз­душных системах или посредством излучающих панелей, радиаторов и конвекторов, рассчитанных на низкотем­пературный теплоноситель (в жидкостных системах). Если тепловая нагрузка отопления равна 45—60 Вт/м2,

Подпись: лі б) Рис. 35. Принципиальные схемы водяной (а) и воздушной (б) активных систем солнечного отопления:

то при использовании напольной системы отопления (по­верхность теплоизолированного снизу пола обогревает­ся теплой водой, циркулирующей по проложенным в нем трубам) достаточно иметь температуру воды 30°С, а тем­пературу поверхности пола 22—24 °С, чтобы в помеще­нии температура воздуха была 18 °С. При этом коэффи­циент теплоотдачи от пола к воздуху составляет 10— І2 Вт/(м2*°С). Пол обычно выполняется из бетона, внут­ри которого прокладывается ряд полиэтиленовых труб 020 мм для теплоносителя, снизу размещается слой теп­

| — коллектор солнечной энергии; 2—аккумулятор теплоты; $ ~ дополнитель­ный источник энергии; 4 —насос (вентилятор); 5 — регулирующий клапан; о — подача йагретбго теплоносителя; 7 —возврат охлажденного теплоносителя лоизоляции, который гидроизолируется от слоя каменной Засыпки. В другом варианте используются медные тру­бы с алюминиевым ребром (листом) толщиной 0,5 мм, расположенным над слоем жесткого пенополиуретана. Сверху на алюминиевый лист укладывается тонкий слой войлока, а на неґо палас. Под отапливаемым полом может размещаться галечный аккумулятор, через ко­торый с помощью вентилятора продувается воздух.

Принципиальные схемы жидкостной и воздушной си­стем солнечного отопления (рис. 35, а н б) содержат солнечный коллектор, аккумулятор теплоты, насосы (вентиляторы), дополнительный источник энергии, ре­гулирующую арматуру, подающий й обратный трубопро­воды (воздуховоды). На рис. 36 показан жилой дом с жидкостным солнечным коллектором на крыше. Ос­тальное оборудование гелиосистемы отопления и горя­
чего водоснабжения дома размещено в подвале. Там установлены основной аккумулятор теплоты, теплообмен­ник 3 для подогрева воды, бак для аккумулирования го­рячей воды, теплообменник 5 для нагрева воздуха для отопления дома, расширительный бак и теплообменник 8 для передачи теплоты от антифриза к воде. Снаружи дома находится теплообменник 6, предназначенный для сброса избыточного количества уловленной солнечной теплоты в летний период. Итак, в доме предусмотрено воздушное отопление.

image051

Рис..36. Дом с активной гелиосистемой теплоснабжения:

1 — солнечный коллектор; 3 — ацдоулятор теплоты; з — теплообменник для подогрева воДы; 4 — бак-аккумулятор горячее воды; 5 — теплообменник для вагрева воздуха; в — теплообменник для сброса избыточной теплоты; 7 — Рас­ширительный бан; а — теплообменник для вагрева воды

Основное и вспомогательное оборудование гелиоси­стемы, включая аккумулятор теплоты, теплообменники, насосы, тепловой насос, дополнительные подогреватели для горячей воды и отопления, т. е. все, кроме солнечного коллектора, устанавливаемого на крыше, может разме­щаться в подвале дома или пристройке.

Сравнение активных и пассивных гелиосистем дает возможность выявить их преимущества и недостатки. Преимущества активных гелиосистем связаны с легко­стью и гибкостью интегрирования системы со. зданием, возможностью автоматического управления работой си­стемы и снижением тепловых потерь. Однако при приме­нении активных гелиосистем часто возникают проблемы, обусловленные недостаточной надежностью оборудова — ная, в том числе системы автоматического управления, неправильными его установкой и монтажом, плохим тех­ническим обслуживанием, опасностью замерзания и кор­розии, особенно в системах с жидкостным коллектором солнечной энергии. Существенным недостатком этих си­стем является их высокая стоимость. В отличие от них пассивные системы просты, надежны в работе и недоро­ги, но они также имеют недостатки. Прежде всего воз­никают трудности с поддержанием температурного ре­жима, необходимого для обеспечения теплового комфор­та в отапливаемых помещениях. Так, в системах с пря­мым улавливанием солнечной энергии из-за недоста­точной массы теплоаккумулирующих элементов и их не­правильного размещения возникают сильные колебания температуры в помещениях. При использовании стены Тромба могут иметь место большие утечки теплоты на­ружу, если в ночное время не закрывать остекленные по­верхности тепловой изоляцией. В то же время здания с гелиотеплицей летом могут испытывать перегрев. В гиб­ридных системах можно соединить достоинства актив­ных и пассивных элементов и устранить многие недос­татки, повысив тем самым эффективность систем при умеренных капиталовложениях.

ПРОСТЫЕ СОЛНЕЧНЫЕ УСТАНОВКИ ДЛЯ ПРИУСАДЕБНЫХ И ДАЧНЫХ УЧАСТКОВ

Самый простой солнечный водонагреватель можно сделать, используя черный пластмассовый шланг, кото­рый для этого сворачивается в виде спирали в бухту и укладывается на южный скат наклонной крыши.(рис. 87). Один конец шланга надевается на водопроводный кран, а второй соединяется с душем. Необходимую лу — чевоспринимающую поверхность и емкость этого водо­нагревателя можно обеспечить, выбрав соответствующую длину шланга, а регулируя краном расход воды, можно

image120

Рис. 87. Простой водонагрева­тель из черного полиэтиленово­го шланга:

 

 

Рис. 88. Пленочный водонагрева-
тель:

/ — черяая пленка; 2 — прозрачная
пленка; 3 — штуцер для воды; 4 —
теплоизоляция; 5 — прозрачная плен-
ка; 6, 7 —воздушный клапав

получить требуемую температуру горячей воды. Кольца бухты должны быть ослаблены, и для уменьшения теп­ловых потерь сверху можно натянуть прозрачную поли­мерную пленку, зафиксировав ее на высоте 15—25 мм от шланга с помощью деревянной рамы’ (ящика)} снизу же под бухту шланга следует подложить металлический лист или фольгу с высокой отражательной способностью или хотя бы окрашенный в белый цвет лист фанеры. Лучевоспринимающая поверхность шланга длиной 100 м, внутренним диаметром 16 мм при толщине стенки 2 мм составляет 2 м2, а его емкость 0,02 м3. Для того чтобы нагреть 1 кг воды от 15 до 40 °С, требуется 105 кДж теп­лоты.

В летний период в Подмосковье на 1 м2 лучеприем — ной поверхности в день поступает в среднем 19,5 МДж солнечной энергии. При КПД 0,3 количество получаемой

полезной тенлоты с площади 2 м2 за день составит id,5X Х0,3-2= 11,7МДж. Задень можно получить 110кг. воды с температурой 40 °С. Это эквивалентно 5,5 полной емко­сти шланга. Нагретую воду можно собирать в теплоизо­лированный резервуар, из которого затем вода будет ис­пользоваться для ванны, душа и т. п. При продолжи­тельности инсоляции 8,5 ч в день среднечасовой расход воды равен 13 кг/ч, или 1,8 г/с на 1м2 площади поглоща­ющей поверхности. Скорость воды равна 0,018 м/с.

Нетрудно изготовить водонагреватель из черной и прозрачной прочной полимерной пленки в виде мешка, дно которого выполнено из черной пленки, верхняя вы­пуклая поверхность — из прозрачной пленки, а между ними находится вода (рис. 88). Заполнение и опорожнение водонагревателя производится через штуцер соответст­венно утром и вечером. Для уменьшения тепловых по­терь водонагреватель может быть снабжен теплоизоля­цией снизу и прозрачной изоляцией. Водонагреватель переносной, и его можно использовать дома, на даче, на пляже, в туристских походах и т. п. Для получения го­рячей воды достаточно поместить его на солнце, напри­мер на крыше автомобиля.

Выполним прикидочный расчет. количества горячей’ воды, которое можно получить за день в южных районах страны. Примем, что в летний период поступление сол­нечной энергии составляет в среднем 21,9 МДж/м2 вдень (для условий, Алма-Аты, май — август) и КПД водона­гревателя равен 0,4. Тогда полезное количество теплоты доставит Qn=8,76 МДж/м2 в день. При разности тем­ператур горячей и холодной воды Af=*45— 15=30’С количество горячей воды, получаемой с 1 и2 площади водонагревателя, составит G ** Qul(cpAt) — 8,75: (4Д9Х ХІО-^ЗО) = 70 кг в день. Следовательно, емкость водо­нагревателя должна быть равна 70 л, а толщина слоя воды 70 мм.

Без сомнения, описанные водонагреватели являются весьма примитивными устройствами, и их эффективность довольно низкая. Значительно эффективнее компактные водонагреватели, достаточно подробно описанные в § 8 (см. рис. 25—27). Отличаясь простым устройством и низкой стоимостью, они обладают достаточно высоким КПД. Возможны различные модификация указанных конструкций. В частности, водонагреватель, показанный на рис. 25, может содержать несколько цилиндрических

емкостей (до шести — восьми) в едином корпусе. Во­донагреватель, показанный на рис. 27, не обязательно должен иметь тепловые трубы. Вместо них может ис­пользоваться обычный трубчатый абсорбер типа «труба в листе» и т. п. Верхний и нижний гидравлические кол­лекторы абсорбера соединяются трубками с баком-ак­кумулятором горячей воды, который имеет горизонталь­ное расположение и соединен также с баком холодной

image121

Подпись: Рис. 89. Объединение гелиоус-тановки и топливного водона-гревателя:

1 — гелиоводонагреватель с естествен­ной циркуляцией ВОДЫ; 2 — напорный бак с поплавковым клапаном для под­вода воды,’ S — топливный водонагре­ватель; 4 — потребители горячей воды; 5 — холодная вода; 6 — топливо (газ)

Рис. 90. Гелиотеплица е земляной насыпью:

1 — остекление; 2—насынь; 3 — северная стена; 4 — канал для воздуха воды небольшой емкости. Все эти конструктивные эле­менты объединяются в единый компактный водонагре­ватель, аналогичный тому, который представлен на рис. 27.

Солнечный водонагреватель может соединяться с обычным топливным водонагревателем по схеме, пока­занной на рис. 89.

При разработке и организации производства солнеч­ных водонагревательных установок необходимо учиты­вать рекомендации по повышению эффективности кол­лекторов, изложенные в §5, а также те прогрессивные технологии, которые описаны в данной главе. >

На приусадебных и дачных участках солнечные, уста­новки должны найти довольно широкое * применение.

Кроме описанных выше простых водонагревателей мож­но рекомендовать гелиотеплицы, показанные на рис. 90— 92, которые нетрудно построить непосредственно на уча­стке. При этом следует иметь в виду, что эффективность теплицы повышается при защите с помощью слоя тепло­изоляции северной стенки, аккумулировании теплоты в грунте и подогреве воздуха или воды в солнечном кол­лекторе. Вода, нагретая в коллекторе, циркулирует в трубопроводах, проложенных в грунте. Для этой цели используются пластмассовые трубы, не поддающиеся коррозии. Простая конструкция теплицы с пассивным ис-

image123Рис. 91. Гелиотеплица с
подпочвенным галечным ак-
кумулятором теплоты:

1 — теплица; 2 — аккумулятор

теплоты; 3 — канал для цирку> ляции воздуха;.’* -*■ вентилятор

пользованием солнечной энергии показана на рис. 90. Она имеет развитую остекленную поверхность с южной стороны и засыпанную грунтом стенку с северной сторо­ны. Земляная насыпь служит одновременно теплоизоля­цией и аккумулятором теплоты. Для циркуляции возду­ха в насыпи предусмотрены каналы. Днем происходит нагрев этого слоя земли, а ночью от него теплота отво­дится воздухом, поступающим в теплицу.

В гелиотеплице (рис. 91) с прозрачной южной сто­роной и теплоизолированной северной стеной целесооб­разно применять подпочвенный Галечный аккумулятор. Для лучшей циркуляции воздуха следует использовать вентилятор, установленный в воздуховоде. Для аккуму­лирования теплоты требуется 0,5—0,9 м3 гальки (щебня, камня) на 1 м2 площади остекленной южной поверхно­сти.

Потери теплоты гелйбтеплицы в ночной период зна­чительны, и температура воздуха в теплице может упасть ниже допустимого предела в 5 °С. Можно существенно

снизить теплопотери путем применения подвижной теп­лоизоляции. Пример конструктивного исполнения тепли­цы с поворачивающейся шарнирно закрепленной тепло­изоляционной панелью показан на рис. 92. В ночное время панель поворачивается и в горизонтальном положении защищает растения от переохлаждения. Для большего эффекта внутренняя поверхность панели дол-

image124

Рис. 92. Гелиотеплица с подвижной теплозащитой г

І—северная стена; 2—неподвижная теплоизоляция стенки; 3— прозрачная изоляции; 4 — клапан Для вентиляции; 5 — подвижная теплоизоляция; S — теп­лоизолированный фундамент; 7 — галечный аккумулятор теплоты; 3 — бочки

с водой

жна быть окрашена в белый цвет. В этой гелиотеплице используются два тепловых аккумулятора — галечный и водяной. Галька засыпается в продольный канал в по­лу, проходящий по всей длине теплицы. Бочки с водой помещаются на полу У теплоизолированной стены. Мож­но также использовать канистры с парафином — в этом случае требуется меньший объем теплоаккумулирующего материала.. Вместо жесткой теплоизолирующей панели можно использовать горизонтальную штору, движущую­ся с помощью вращающихся опорных роликов.

Гелиотеплицу можно скомбинировать с другими по­лезными сооружениями. Например, внутри теплицы

можно разместить пруд для разведения рыб (рис. 93) или над ней устроить солнечный опреснитель.

При строительстве гелиотеплицы возникает ряд прак­тических вопросов. В частности, важное значение имеют такие вопросы, как выбор места для строительства теп­лицы, ее ориентации, угла наклона светопрозрачной по* верхностй. Теплицу надо размещать на ровном солнеч­ном месте, не затеняемом зданием или деревьями. Ни­зинные места, где часто бывают туманы и заморозки, не

5

image125

Рис. 93. Гелиотенлнца с прудом для разведения рыб:

/ — теплица; 2 — пруд; 3 — строительная конструкция; 4 — фундамент; 5 — вентиляционный клапан; £ —грядки с рассадой

пригодны для теплиц. Нельзя располагать теплицу в промежутке между двумя домами или между домом и са­раем, так как там возникает сильный поток воздуха. С северной стороны теплица должна быть защищена от ветров плотным забором или высоким кустарником — Устройство фундамента показано на рис. 94. Наруж­ная поверхность фундамента должна быть покрыта сло­ем теплоизоляции толщиной 30—40 мм (пенополисти­рол) . Теплоизоляция должна быть защищена от влаги земли битумным покрытием, рубероидом, полимерной пленкой. Если возможно попадание дождевой воды, то перед фундаментом вырывают ров и заполняют его круп­ной щебенкой, а на дно кладут дренажную трубу — ке­рамическую или пластмассовую — диаметром 50-^-200 мм.

Влага земли всегда проникает из крупнозернистого слоя в мелкозернистый, поэтому дно теплицы следует выкла­дывать из крупного щебня. Более надежную защиту от влаги обеспечивает многослойная структура, состоящая из слоев щебня, теплоизоляции и бетона со слоем поли­винилхлоридной пленки для защиты теплоизоляции от влаги. Особенно хорошая влагозащйта требуется для теплицы, пристроенной к жилому дому. Кроме описанной

image126

Рис. 94. Фундамент гелиотеплицы с теплоизоляцией (а) и влагоза­шитой (б):

У—фундамент; 2 теплоизоляция; 3 — рубероид; 4 — пленка или металличес­кий лист; S — щебень; 6 — дренажная труба; 7 — слой тощего бетона; 8 — плен­ка для вл а г оэ а щиты; 9 — пол; 10 — опорная стена

выше защитной структуры должен быть применен также барьер для распространения водяных паров в горизон­тальном направлении.

При изготовлении несущей конструкции и обшивки теплицы из дерева доски должны быть предварительно обработаны составом, защищающим от грибка; доски должны прибиваться так, чтобы вода не проникала через стыки (лучше всего, если доски перекрывают одна дру­гую). Рамы окон и дверей, а также вентиляционные от­верстия должны иметь хорошее уплотнение для предот­вращения неконтролируемой инфильтрации воздуха. Клапаны могут изготовляться из металлического листа или из фанеры и могут поворачиваться вокруг верти­кальной-или горизонтальной оси, расположенной посере­дине или с краю клапана. Все непрозрачные поверхности теплицы (северная стена, нижняя часть южной стены,
фундамент) для уменьшения теплопотерь должны быть теплоизолированы. В качестве теплоизоляции можно ис­пользовать такие материалы, как минераловатные Маты, пенопласты — пенополиуретан, пенополистирол, сухие

Подпись: 12 3 2 Рис. 95. Простая перенос-
ная гелиосушилка:

Подпись: I Рис. 96. Переносная солнечная сушилка: / — деревянный ящик с перфорированными стенками и днищем; 2 —остекление

I — стенка из фанеры; 2 — метал-
лическая сетка; 3 — остекление;
4 — опорные ножки

опилки и стружка, спрессованная солома и др. Следует помнить, что влажные материалы теряют свои теплоизо — ляционые свойства, поэтому особое значение имеет за­щита теплоизоляции от. попадания влаги.

Располагать гелиотецлицу надо так, чтобы конек ее

крыши совпадал с осью росток — запад. Угол наклона южной светопрозрачной поверхности выбирают с таким расчетом, чтобы обеспечить максимальное количество уловленной солнечной энергии в данной местности. Так, для средней полосы оптимальным является наклон в 50— 60°. Угол наклона крыши должен быть равным 20—35°, чтобы хорошо удалялись осадки и грязь. Толщина теп-

image129

Рис. 97. Секционный солнечный опреснитель (дистиллятору

image130

Рис. 98. Пленочный солнечный опреснитель!

I — полимерная пленка: У — трубя; S — строительная конструкція; * — гядро — «кодированНыВ лоток; я — теплоизоляции; S — желоб для дистиллята; 7 — И0Р’ скак води; * — яодяиоі пар; 9 —кокдекеат

лоизоляции северной стены выбирается в пределах 150— 250 мм в зависимости от коэффициента теплопроводнос­ти используемого материала. Остекленная поверхность в ночное время может иметь теплоизоляцию толщиной 20—50 мм. При этом коэффициент теплопотерь через ос­текление может уменьшиться от 6,8 Вт/(ма-°С) при од­ном слое стекла толщиной 3—4 м до 0,75 Вт/(м2-°С| при одном слое стекла и пенополистирольной теплоизоляции толщиной 50 мм. Для теплоизоляции можно использовать легкие пенопластовые маты толщиной 50 мм из экстру­дированного полистирола, закрепляемые магнитами на стекле.

Можно также использовать рулонный эластичный теплоизоляционный материал толщиной 30 мм. Чтобы не образовывался конденсат на холодной поверхности стек­ла (за теплоизоляцией), перед теплоизоляцией надо ус­тановить защиту (из полимерной пленки) от водяных паров. В теплицах больших размеров в ночное время ис­пользуются шторы из полимерной пленки с напыленным отражательным (алюминиевым) покрытием. Благодаря этому теплопотери снижаются на 40—60 %. При исполь­зовании наружной теплоизоляции на остеклении конден­сация водяных паров на стекле не происходит, но между теплоизоляцией (жесткие пенопластовые панели или гибкие маты) и остеклением не должно быть движения воздуха, а сама теплоизоляция должна быть защищена от воздействия осадков. Жесткие теплоизоляционные панели днем откидываются и отражают дополнительное количество солнечной энергии на светопрозрачные по­верхности теплицы.

Фундамент должен доставать до уровня постоянной температуры грунта, а его теплоизоляция должна покры­вать всю ту поверхность фундамента, которая может на­ходиться в области отрицательных температур. Обычно глубина фундамента составляет 80—120 см.

В огородничестве и садоводстве следует больше ис­пользовать грунт, защищенный 1—2 слоями полимерной пленки. Это сокращает сроки созревания на 2—3 недели. При выращивании клубники хороший эффект дает ис­пользование черной полимерной пленки, укладываемой на землю под кустики клубники. При этом подавляется рост сорняков, ускоряется рост клубники и предотвра­щается загрязнение ягод землей. Использование отра­жательных подстилающих цветных (красный цвет для

томатов, белый для картофеля) поверхностей способст­вует более быстрому созреванию плодов и клубней. Так же благотворно влияет отраженный солнечный свет на садовые культуры.

Для подогрева воды для плавательного бассейна и других сезонных потребителей рекомендуется использо­вать неостекленные пластмассовые (полипропиленовые} коллекторы в металлической раме (из алюминия или оцинкованного железа) на легкой металлической опор­ной конструкции.

Широкое применение должны получить солнечные сушилки, которые нетрудно изготовить самим. В § 13 описаны конструкции достаточно простых пленочных су­шилок (см. рис. 54 и 58). Рассмотрим еще некоторые кон­струкции переносных сушилок, которые могут быть ис­пользованы для различных сельхозпродуктов. Сушилка, показанная на рис. 95, представляет собой деревянный ящик (из фанеры или тонких досок) с двумя боковыми стенками и днищем из металлической сетки. Верхняя крышка может сниматься и имеет прозрачное покрытие. Сушилка снабжена четырьмя опорными стойками. Внут­ренняя поверхность ящика окрашена в черный цвет. Це­лесообразно также использовать полностью деревянный ящик с отверстиями для воздуха, а также перфориро­ванное днище с остеклением (рис. 96). Для сушки сена можно использовать сушилку, показанную на рис. 54 При этом воздухонагреватель следует располагать с южной стороны сарая, а саму камеру для сушки сена лучше помещать внутри сарая или амбара.

Можно изготовить также простой солнечный дистил­лятор для обессоливания минерализовайной или опрес­нения морской воды, пбказанный на рис. 97. В качестве материала для этого опреснителя можно использовать пенопласт (полистирол и т. п.). Указанные размеры од­ного модуля — чисто ориентировочные, число параллель­но соединенных аппаратов может быть любым. В каче­стве прозрачной изоляции следует использовать поли­мерную пленку. Простой пленочный опреснитель морской (минерализованной) воды показан на рис. 98. Прозрач­ная пленка, натягиваемая горизонтальной трубой и за­крепленная на стенках, пропускает солнечное излучение, которое поглощается зачерненным дном, от которого на­гревается тонкий слой морской воды. Вода испаряется, и пары конденсируются на пленке в виде капель, стека —

юідих по поверхности пленки в приемный желоб, откуда по трубке дистиллят отводится в сборную емкость. Снизу дистиллятор имеет слой теплоизоляции. Исходная вода периодически подпитывается.

Какова продолжительность хранения теплоты в аккумуляторе?

От нескольких часов до нескольких дней. Для уста­новок горячего водоснабжения обычно достаточно запа­са теплоты на 8—12 ч, а для установки солнечного ото­пления — от 2—3 до 4—5 дней. В принципе возможно запасать солнечную теплоту летом, а использовать ее зимой, но для этого требуются аккумуляторы теплоты большой вместимости с очень хорошей теплоизоляцией, экономически это нецелесообразно для индивидуальных потребителей.