Category Archives: EuroSun2008-5

Application of the different test methods

A CPC collector having an aperture area of 1.87 m2 was analysed. The collector uses a circular absorber tube with an outer diameter of 19 mm. With an aperture width of 103 mm this results in a concentration ratio of C = 1.73.

Table 1 shows the results determined with the tests under quasi-dynamic and steady state conditions. The mean diffuse fraction during the test under steady state conditions was D = 0.3.

Figure 3 shows the power curves calculated using the collector parameters determined under quasi­dynamic conditions for diffuse fractions of 0.1, 0.3 and 0.5 together with the power curve calculated with the collector parameters determined under steady state conditions.

Table 1. Collector parameters determined

П0

[-]

Kdfu

[-]

a1

[W/(m2K)]

a2

[W/(m2K2)]

ceff

[kJ/(m2K)]

quasi-dynamic

0.798

0.725

3.483

0.009

13.65

steady state

0.725

3.599

0.007

Figure 3 shows the significant dependency of the collector output on the diffuse fraction D. For a diffuse fraction of D = 0.5 the maximum collector output is reduced by 160 W/m2 and 11 % respectively compared to the collector output at a diffuse fraction of D = 0.1.

image122

— •-D = 0.1 ………. D = 0.3 ——— D = 0.5 steady state

Fig. 3. Power curves (G = 1000 W/m2) for different diffuse fractions and under steady state conditions

The power curve determined using the test method under steady state conditions shows a similar appearance as the power curve determined for a diffuse fraction of D = 0.3. This attributes to the fact that the mean diffuse fraction during the test under steady state conditions has been D = 0.3.

From the presented investigation two main conclusions can be drawn:

1. The collector parameters gained from the test under quasi-dynamic conditions are very well suited to calculate the collector performance for different diffuse fractions. 2

3. Conclusion

The test method under quasi-dynamic conditions is, contrary to the test method under steady state conditions, very well suited to determine the thermal performance of CPC collectors having a concentration ratio larger than 1. Especially the differentiation between diffuse and beam irradiance permits a reliable modelling of the thermal performance under arbitrarily diffuse fractions. The level of detail provides a more exact estimation of the yearly energy gain and thus a better planning reliability during the dimensioning of solar thermal systems using CPC collectors.

Due to the poor reproduction of the incident irradiance the test method under steady state conditions is not suited for CPC collectors. The inaccuracy of the test method even grows with rising concentration factors.

The increasing efforts in the fields of solar thermal process heat and solar cooling have led to a rising number of concentrating collectors on the European market. Against this background it is appropriate to nominate the test method under quasi-dynamic conditions as the sole test method to be used for concentrating collectors within the next revision of the European standard EN 12975.

Nomenclature

a1

[W/(m2K)]

Heat loss coefficient

a2

[W/(m2K2)]

Temperature dependent heat loss coefficient

A

[m2]

Aperture area

C

[-]

Concentration ratio

ceff

[J/(m2K)]

Effective heat capacity of the collector

D

[-]

Diffuse fraction

G

[W/m2]

Hemispherical irradiance

Gdfu

[W/m2]

Diffuse irradiance

Gdir

[W/m2]

Beam irradiance

Gnet

[W/m2]

Useful irradiance

K(0)

[-]

Incidence angle modifier for hemispherical irradiance

Kbeam(0)

[-]

Incidence angle modifier for beam irradiance

Kdfu

[-]

Incidence angle modifier for diffuse irradiance

N

[-]

Fraction of useful irradiance

Q

[W]

Collector output

П0

[-]

Conversion factor

0

[-]

Angle of incidence

0a

[°C]

Ambient temperature

0fl, m

[°C]

Mean fluid temperature

t

[s]

Time

References

[1] DIN EN 12975-2:2006, Thermal solar systems and components — Solar collectors — Part 2: Test methods -, 2006.

Improved new testing possibilities for air-collectors

image159 image160 image161

As explained in the abstract, Fraunhofer ISE has already operated a test facility for solar air collectors for some years. We have now started to extent and improve our testing possibilities. Our concept was to have a mobile testing facility. That means that either it may be used within the existing indoor test stand with the solar simulator. But additionally, we also made it possible to use the components of the air-collector testing loop at the outdoor testing facility with sun tracker. In both cases the testing facilities allow measurements with very high accuracy and reproducibility. Figure 1 shows the set-up of the air-collector testing loop. Exactly the same rules as described in EN12975 for the testing of water-collectors are used for the air-collector tests.

Fig. 1. Set-up of the air-collector testing loop for efficiency measurements

Information on the components of the loop are summarised here, and will be commented after the list:

• Two ventilator units, each with a flow rate performance between 0 — 500 m3/h, 400 Pa

• Two flow meters (MR) with a measurement range of 0 — 1000m3/h

• Two humidity sensors(FR) to measure the relative humidity of the air in the test loop

• four temperature sensor (TR) to measure the inlet — and outlet-temperature of the collectors, and temperature measurement points necessary to determine the density and the heat capacity of the air at the flow sensors

• water-to — air heat exchanger to condition the air in the test loop

• pressure difference sensor (PR)

• solar radiation (RR)

• Ambient air temperature (TR)

Compared to a water-collector test loop, we added some additional features due to our testing experience with air-collectors:

1. Not one, but two air ventilators are used. Although in principle solar air-collectors should be tight and do not have leakages in the absorber, many of them (especially at the beginning of a development process) are not air tight. This is disturbing the efficiency measurements. It is therefore very helpful, if two ventilators are installed in the test loop. Because they can be operated in such a way (one is pushing air, the other is sucking air) that with the proper adjustment as a result there is only a small difference between the absolute pressure of the air in the collector and the pressure of the ambient air. Thus, air leakage does only have a small influence on the efficiency measurement and development measurements can be carried out in a reproducible was. Of course, the air leakage rate is nevertheless important for the performance of a collector and should be measured and reported in separate measurements. And as mentioned already, the collector should be air tight.

2. Water is an incompressible fluid, but air is not. Therefore the influence of the absolute pressure of the fluid has to be taken into account. Figure 2 shows the dependence of air density on temperature and pressure. The variation within the typical measurement boundaries can be seen from Figure 2. In any case, the influence can easily be included in the measurement and evaluation procedures.

t

 

£

tfl

c

&

 

70 90 110

Temperatur in °C

 

-30

 

-10 10

 

30

 

50

 

130

 

150

 

170

 

190

 

image162

image163

image164

Figure 2: Dependence of air density on pressure and temperature.

Figure 3: Dependence of specific heat capacity of air on temperature and humidity (xw20 denotes an

absolute humidity of 20 g/m[16]).

Automatic Control System

The whole automation system is mainly divided into two parts: one part is the hardware equipments consisted of all kinds of devices used in the testing system; the other part is the software program based on Labview language. I/O device is used to connect hardware with software. Through the automation system the test system need to be operated normally and accurate measurement is also acquired. Because of the strict requirements under the test conditions according to ISO 9459-2, the system needs to accurately identify solar time and determine the test process whether it is in a exactly true position in sequence. At the same time data acquisition system will be operated to collect and record data with real-time curve of all sorts of signals. After the whole test process is finished, all of data will be used to produce the test report. Therefore, the main purpose of automatic control system is to release the tedious labour work of the operator and develop a set of efficient and reliable system in order to measure and control the test system automatically. The system should also be reliable and stable in different conditions to guarantee the normal operation of the whole test system.

The application of the regulations minimal solar collector area

Following the new regulations, a three bedrooms autonomous zone must have a minimal collector area of 4 m2 independently of the climate zone were is located. From the simulations results mentioned in chapter 5.4 we took the maximum value for Esolar that was 2083kWh/year in Alandroal (I1V3). What happens if we would like to reach on the others localities the same energy achieved in this one? The results have showed that just one location can reach almost that value with the minimal required area (4 m2), the other need more area (Fig 2.). It was made also calculations to see what the maximal SCA without having significant energy dissipations (overheating). This means that adopting just the regulation minimal collector area we can be wasting solar energy in some climatic zones that could have more potential. Of course we could adopt more efficient collectors to reach a higher value but, as it usual, many designers are going to follow strictly the imposed area and even will try to reduce it to save in costs and to achieve an easily integration in roofs. Calculating the minimal collector area for the rest of the localities (maintaining the same collector efficiency) to reach the same Esolar of Alandroal, resulted, in most of them, panel area increments of 0,5 m2 to 2,5 m2. In face of this, it seems it would be more effective to evolve the requirements to a minimal Esolar value per household adapted to different climatic zones or groups of zones. This would permit a better energy efficient /cost collector selection with not less energy efficiency management.

11

 

■ maximum solar collector area

 

■ solar collector area to achieve the same Esolar value

 

image084

Fig 2. — Maximum SCA / SCA to achieve the same Esolar in the nine different localities.

3. Conclusions

Without any doubts, the new Thermal Regulations brings new challenges for the building design and construction industry activities and represents a start point to further advances in building sustainability and energy efficiency. After analyse the critical aspects concerning the implementation of solar collectors in Portugal, it was noticed that collectors market has conditions nowadays to grow towards a solid and income-producing market. But other conclusions could be taken. Portuguese Civil Engineers project designers are still not sufficient prepared to deal with this new technology although they are struggling to adapt to regulations and looking for training. By other means, high education institutions should adapt their Civil Engineer courses to give more competencies in these matters. Also, an adequate selection of the equipment system turns out to be a very important procedure to meet the regulations requirements. The building water supply design project, principally for multi-residential buildings, is facing important conceptual changes. Also, a repair and maintenance building design project, so long discussed and requested, turns to be even more essential. Architects have also here a very important role on the integration of solar collector on buildings as they could, among other things, design roof tilt angles adapted to solar collector optimal angles. But we must not forget we need government polices to provide minimal guarantees to building sun exposure. Relatively to the minimal regulations collector area, it seems that adopting just this area we can be wasting solar energy in some climatic zones that have more potential. A minimal Esolar value per household adapted to different climatic zones could guide better the designers to get more project design quality. Finally, we realize that, much work must be done but the changes imposed by new regulations should be seen as an opportunity to take the initial steps to more effective energy efficient construction in buildings.

References

[1] European Union Directive 2002/91/CE of 4 of January 2003.

[2] Portuguese Government, Decree Law 80/2006 of 4th April.

[3] ADENE, INETI, SPES, APISOLAR, MEI, DGGE, Hot Water Program for Portugal (IP-AQSpP), www. aguaquentesolar. com.

[4] DGGE & Ministry of Economy and Innovation (MEI), (2008) Portugal Efficiency 2015 — National Plan for Energy Efficiency (PNAEE), DGGE & MEI, Lisbon.

[5] Weiss, W., Faninger, G, (2002) Solar Thermal Collector Market in IEA Member Countries, IEA Solar Heating & Cooling Programme, Austria.

[6] Portuguese Observatory for Solar Thermal, (2003, 2004, 2005, 2006) Characterization of Solar Thermal in Portugal, ADENE & IP-AQSpP, Lisbon.

[7] National Institution for Energy and Geology (DGGE), (2004) The Solar Collectors Use for Domestic Water Heating, DGGE & IP-AQSpP, Lisbon.

[8] NHBC (2007), Guide to Renewable Energy, NHBC Technical, Amersham, Bucks, UK.

Measured sequences used for validation purposes

The comparison of experimental and calculated instantaneous power results, obtained after the different approaches presented in the previous section, is based on instantaneous efficiency measurements for a CPC collector (C = 1.72), as well as on their corresponding steady-state and dynamic efficiency curve parameters. The measurements were made at the Institute for Thermodynamics and Thermal Engineering (ITW) of the University of Stuttgart, Germany.

Two measurement periods were chosen, allowing the validation of power calculation methodologies under different radiation conditions. Values of radiation measured on the collector aperture plane (tilt = 48°, azimuth = 5°, latitude = 50°, albedo = 0.2) and measured instantaneous power values are represented in figures 1a) and b) for both periods. In the first measurement period, the collector was positioned on an EW orientation, whereas in the second period the collector was on a NS orientation.

b)

 

a)

 

Fig.1. Global, Beam and Diffuse irradiance values (Gcoi, Icoi, Dcoi) incident on collector aperture plane and measured power flux delivered by the solar collector (qmeas ) for a) May 2nd and b) May 29th measurements

 

image131

Considering the use of the power correction methodology proposed by Horta et al. (2008) in power calculations after steady-state efficiency test parameters, average diffuse radiation fractions of 0.3 and 0.25 are estimated for the first and second measurement periods, respectively.

It is important to refer, at this point, that not all data presented in the previous figures would be usable for a steady-state test. Actually, as the name suggests, the steady-state test methodology is based upon a collector heat balance assuming stationary conditions.

Furthermore, it must be cleared that these same measurement periods based the determination of the dynamic efficiency curve parameters used in the calculations to follow.

First results of the implementation of QD test methodology

4.1. Test of a flat plate collector

A selective flat plate collector was tested according to QD test methodology. In order to analyse the test sequences, graphs were generated according to the recommendations of the standard EN 12975-2 section 6.3. These graphs are represented in Fig. 1.a), b) and c).

image180

Analysis of the graph in Figure 1a) shows that the test was conducted within the expected working temperature range of the collector. This meets the requirement to have at least 4 fluid inlet temperatures evenly spaced in the collector’s working temperature range. One of the tests was conducted under conditions in which the collector’s mean fluid temperature stood at ± 3 K of ambient temperature, around solar noon, so as to make possible a precise determination of n0.

The parameter identification using the developed the MLR tool gave the results listed in Table 1.

Table 1: Parameters determined with MLR analyses

F(ra)en

b0

Kd

c1

c2

c5

0.664

-0.034

1.194

-3.085

-0.023

0.123

As already referred, the fact that not enough cloudy conditions were included in the test sequences may have induced the determination of values of b0 and Kd, which are not in agreement with the expected values for a flat plate collector.

Also the parameter c5 shows a very low value, maybe as a result of not enough transient data included in the test sequences. Although individually the parameter values are not completely in agreement with the expected values, de comparison of the power curves — measured and calculated using equation (8) and the parameters of Table 1, shows very good agreement. This is shown in Figure 2.

image181

Figure 2 — Comparison of calculation of Q/A using the model with lab results.

Fault diagnostic method for a water heating system based on. continuous model assessment and adaptation

Sylvain Lalot[1]*, Soteris Kalogirou[2], Bernard Desmet1, and Georgios Florides2

1LME, Universite de Valenciennes et du Hainaut Cambresis, Le Mont Houy,

59313 Valenciennes Cedex 9, France

2Cyprus University of Technology, P. O. Box 50329, 3603 Lemesos, Cyprus
* Corresponding author, sylvain. lalot@univ-valenciennes. fr
Abstract

The objective of this work is the development of an automatic solar water heater (SWH) fault diagnostic system (FDS). The latter consists of a modelling module and a diagnosis module. A data acquisition system measures the temperatures at four locations of the SWH system (outlet of the water tank; inlet of the collector array; outlet of the collector array; inlet of the water tank). In the modelling module a number of artificial neural networks (ANN) are used, trained with the very first values when the system is fault free. Then, the neural networks are able to predict the fault-free temperatures and compare them to actual values. When the differences are low, the corresponding networks are unchanged. On the contrary the networks are retrained. Then the diagnosis module analyses the difference between the current connection weights and the initial weights. When a persistent significant modification occurs, a flag is set to signify that a default is present in the SWH.

The system can predict three types of faults: collector faults and faults in insulation of the pipes connecting the collector with the storage tank (to and from the tank) and these are indicated with suitable labels. It is shown that all faults can be detected well before the end of the drifts, without any false alarm, when the networks and thresholds are well tuned and that the observation window has the right size. It is shown that this does not depend on the draw off profile.

Keywords: fault diagnostic, model adaptation, neural network, water heating system

type. As it has been shown that continuous drifts can be analysed by neural networks in heat exchangers [3-5], ANN has been chosen here to test such tools. In particular, a method based on neural models is presented according to the study detailed in [6] which shows that a continuous assessment of a model and its adaptation is efficient. In a first part, the solar system is presented along with the drifts that are taken into account. The drift detection tool is detailed in the second part, and results are given in the third part.

A Long Term Test of Differently Designed Evacuated Tubular Collectors

J. Fan*, J. Dragsted, S. Furbo

Department of Civil Engineering, Technical University of Denmark,

Brovej 118, DK 2800, Kgs. Lyngby, Denmark
Corresponding Author, iif@byg. dtu. dk
Abstract

During three years seven differently designed evacuated tubular collectors (ETCs) utilizing solar radiation from all directions have been investigated experimentally. The evacuated tubular solar collectors investigated include one SLL all-glass ETC from Tshinghua Solar Co. Ltd, four heat pipe ETCs and one direct flow ETC from Sunda Technolgoy Co. Ltd and one all-glass ETC with heat pipe from Exoheat AB. The collectors have been investigated side-by-side in an outdoor test facility for a long period. During the measurements, the operating conditions — such as weather conditions and temperature of the inlet fluid to the collectors have been the same for all collectors. The volume flow rate through each of the collectors is adjusted so that the mean solar collector fluid temperature has been the same for all collectors. Thus a direct performance comparison is possible. The side-by-side tests were carried out with different mean solar collector fluid temperatures and in different seasons of the year. The results of the measurements are presented in this paper. The influence of the mean solar collector fluid temperature on the thermal performance of the different collector designs will be discussed. Further, the collector performances are compared for different times of the year and it is illustrated how the performance of the different collector types depends on weather conditions.

Keywords: Evacuated tubular solar collector, collector design, thermal performance, test.

1. Introduction

In recent years the evacuated tubular collectors have gained an increasing share of the market. On the world’s largest solar thermal market, China, evacuated tubular collectors have increased the market share from 30% in 1998 up to 94% in 2007 [1]. In Europe, evacuated tubular collectors of up to 240,000 m2 were installed in 2007 [2].

On the market there is a large number of collector manufactures providing evacuated tubular collectors with a variety of types such as all-glass, heat pipe, all-glass with heat pipe, direct flow, with and without reflectors. As far as the heat pipe evacuated tubular collector is concerned, there are designs with different tube diameters and different shapes of the absorber. It is therefore important to know how the different designed evacuated tubular collectors perform. He et al. [3] made a comparison of optical performance of evacuated collector tubes with flat and semi-cylindrical absorbers. The collector tubes are utilizing solar energy from the front side. The absorbed energy of the absorber is used in the comparison. They found that the semi-cylindrical absorber outperforms the flat absorber by 15.9% annually if it is located at latitude 40° N. Fan et al. [4] carried out side-by-side outdoor tests of four heat pipe evacuated tubular collectors with a flat fin or a semi-cylindrical fin. The collectors

utilize solar radiation from all directions. The measurements show that at latitude 57° the ETC with a flat fin performs better than the ETC with a semi-cylindrical fin for a tube diameter of 70 mm and a collector tilt of 67°. The ETC with flat fin tends to perform better than the ETC with the curved fin in winter and at high collector fluid temperatures.

Evacuated tubular collectors have a substantially lower heat loss coefficient than standard flat plate solar collectors. This makes ETCs very suitable for high latitude regions like the Arctic. The advantages of evacuated tubular collectors at high latitudes are not only their low heat loss and high efficiency, but also the ability to utilize solar radiation from all directions due to the large variation of the solar azimuth. The aim of this paper is to present the result of a long term outdoor test of differently designed evacuated tubular collectors utilizing solar radiation from all directions. Side-by­side tests of seven differently designed evacuated solar collectors were carried out in a period from February 2006 to August 2008. The thermal performances of the differently designed evacuated tubular collectors are compared. Based on the observations from the measurement, it will be elucidated how the collector performance is influenced by the solar collector designs, the weather and operation conditions.

2. Experiments

Seven differently designed ETCs utilizing solar radiation from all directions have been investigated experimentally. Detailed data sheet of the investigated ETCs is given in Table 1.

Side-by-side tests were carried out in an outdoor test facility at the Technical University of Denmark, latitude 56°N, see Figure 1. On the test platform, five collectors can be tested under the same conditions at a time. The collectors are directly facing south and have a tilt angle of 67° which is suitable for typical operation conditions in the Arctic. The collectors can utilize solar radiation from all directions. A glycol/water mixture of 41% by weight is used as the solar collector fluid. The fluid flow rate through each of the collectors is measured by a flow meter type Brunata HGQ1-R0. The inlet and outlet temperatures of the collector are measured by copper/constantan thermal couples, type TT. The difference between the outlet and inlet temperature is measured by a thermopile. The five collectors are parallel connected to a temperature control unit so that the inlet temperatures to the collectors are the same. A pump is used to circulate the solar collector fluid during all hours so that the inlet temperature of the fluid to the collectors is kept constant. The flow rates through the collectors are adjusted in such a way that the average temperatures of the collector fluids in all the collectors are approximately the same during the test. The accuracy of the absolute temperature measurement and temperature difference measurement is 0.5 K and 0.1K, respectively. The accuracy of the flow rate measurement is estimated to be 1.5%. The measurement data are monitored and logged every two minutes by LabView.

The weather data are measured in a climate station located on the roof of a building close to the test platform. The total and diffuse solar irradiance on horizontal surface and the ambient air temperature are measured.

The thermal performance of the ETCs were measured in the period from February 2006 to August 2008. The experiment is divided into three phases:

Phase 1: February 2006 — June 2006, collectors tested: ETC 1, ETC 2, ETC 3, ETC 4 and ETC 5.

Phase 2: July 2006 — May 2007, collectors tested: ETC 2, ETC 4, ETC 5 and ETC 6.

image062

Phase 3: May 2007 — August 2008, collectors tested: ETC 2, ETC 4, ETC 5, ETC 6 and ETC 7. During the test period, four mean collector fluid temperature levels are used: 26°C, 43-47°C, 63-68°C and 75-78°C.

Fig. 1. The side-by-side test facility.

Table 1. Data of the tested evacuated tubular collectors.

ETC no.

1

2

3

4

5

6

7

Collector type

Seido 5-8

Seido 1-8

Seido 10-20 with curved fin

Seido 10-20 with flat fin

SLL 1500

VA1858

Seido 2-16

Note

Vertical tubes, heat pipe

Vertical tubes, heat pipe

Vertical tubes, heat pipe

Vertical tubes, heat pipe

Horizontal

tubes

Vertical tubes, heat pipe

Vertical tubes, direct flow

Manufacturers

Sunda Technology Co. Ltd

Sunda Technology Co. Ltd

Sunda Technology Co. Ltd

Sunda Technology Co. Ltd

T singhua Solar Co. Ltd

ExoHeat AB

Sunda Technology Co. Ltd

Number of tubes

8

8

20

20

50

24

16

Tube diameter

100 mm

100 mm

70 mm

70 mm

47 mm

58 mm

70 mm

Tube length

2000 mm

2000 mm

1750 mm

1750 mm

1500 mm

1800 mm

1700 mm

Tube centre distance

111-120 mm

111-120 mm

86-93 mm

86-93 mm

72-75 mm

79-84 mm

89-91 mm

Tube diameter / tube centre distance

0.83-0.90

0.83-0.90

0.75-0.81

0.75-0.81

0.63-0.65

0.69-0.73

0.77-0.79

Transparent area

1.54 m2

1.54 m2

2.36 m2

2.36 m2

3.30 m2

2.45 m2

1.87 m2

Collector height

2.16 m

2.16 m

1.90 m

1.90 m

2.00 m

1.97 m

1.90 m

Collector width

0.96 m

0.96 m

1.86 m

1.86 m

3.20 m

1.99 m

1.82 m

Gross area

2.07 m2

2.07 m2

3.53 m2

3.53 m2

6.40 m2

3.92 m2

3.46 m2

Absorber area

3.66 m2

2.80 m2

6.60 m2

4.00 m2

8.71 m2

6.17 m2

3.20 m2

Absorber

material

Aluminum

Aluminum

Aluminum

Aluminum

Glass

Glass

Copper-

Aluminum

Absorber

thickness

0.47 mm

0.47 mm

0.6 mm

0.6 mm

0.6

Selective coating

Aluminum Ni

Aluminum Ni

Aluminum Ni

Aluminum Ni

Aluminum Ni

Aluminum Ni

Aluminum Ni

Absorptance

0.92

0.92

0.92

0.92

0.90

0.92

0.92

Emittance

0.08

0.08

0.08

0.08

0.08

0.08

0.08

Glass thickness

2.5 mm

2.5 mm

1.7 mm

1.7 mm

1.6 mm

1.6 mm

1.7 mm

Transmittance at incidence angle 0°

0.91

0.91

0.91

0.91

0.91

0.91

0.91

Manifold

diameter

28 mm

28 mm

38 mm

38 mm

45 mm

38 mm

38 mm

3. Results and Discussion

Set up of the test facility

One aim of the newly developed all-in-one test facility is to combine all three test methods in a single test facility. This test facility must be able to fulfil all requirements and qualifications result­ing from the above mentioned standards.

The housing of the test facility is a conventional 20 foot office container. In this container the hy­draulics of the temperature unit as well as the measuring equipment and the data logging instru­ments are located. In order to operate the facility independent from a cooling network, a chiller combined with a 600 litre cold water store is installed. With the exception of the chiller, all com-

Подпись: Fig. 1: Arrangement of major components (bird's view)

ponents are located inside the container. Figure 1 shows the schematic layout of the major compo­nents.

The facility is designed in such a way that it allows for parallel testing of

• 4 collectors (according to EN 12975 / ISO 9806) or

• 4 systems according to ISO 9495-2 (CSTG-method) or

• 2 systems according to ISO 9495-5 (DST-method)

Подпись: Fig. 2: Circuit diagram of the complete hydraulic arrangement

To realise these different test configurations, the hydraulic arrangement consists of one main loop that can be divided into six smaller loops by using several valves. These six loops are required for testing two solar thermal systems according to the DST-method at the same time. The hydraulics for testing according to ISO 9459-2 and ISO 9806 / EN 12975 consist of only one hydraulic loop, which can be used to test four systems (CSTG-method) or four collectors simultaneously. In figure 2, the layout of the complete hydraulic arrangement is shown.

On the left side of the diagram the four connections for testing the systems (ISO 9459-2, CSTG — method) or for the collectors (EN 12975) are located (1-4). For the DST-method (ISO 9459-5), connections for two collectors (1-2) including the two necessary connections to the solar collector loop (DST-solar 1-2) are depicted. The middle part of the hydraulic circuit is solely related to the DST-method, since there are the connections for the thermal auxiliary heating loops (DST-aux 1-2) and the storage tanks (DST-tap 1-2) of the two systems to be tested. The first heat exchanger (HX1) in flow direction offers the possibility to connect an optional external cooling net. If this is not available, the heat will be removed via the second heat exchanger (HX2), which is on the sec­ondary side connected to the cold water store of the test facility. The cooling circuit also supplies the air conditioning unit inside the container test facility with cold water. On the right hand side of the vertical line, which symbolizes the wall of the container, the chiller is located.

Подпись: Fig. 3: Chiller connected to the container of the test facility

This chiller is positioned outside the container because this allows a better supply of fresh air to the refrigerant condenser and reduces the noise level inside the container test facility. Figure 3 shows the chiller connected to the container of the test facility.

Подпись: Fig. 4: Hydraulic connections to systems and collectors

All hydraulic connections to the equipment being tested are located outside the container and are realized with conventional 1 inch screw fittings, countersunk into the container walls. In figure 4 the connections to the collectors / systems being tested are shown.

Options of HVAC and DHW equipments

Since the energy label in Portugal is based on an evaluation of primary energy, equipments for ambient heating, ambient cooling and production of domestic hot water have, besides the envelope and the climate, a critical influence in the result. In order to analyse the influence of the equipments, several scenarios were considered, as listed in Table 4.

Table 2 : Main characteristics of case-studies (as in the base-cases)

Apartment T1

Dwelling

Floor area (m2)

53.5

150.4

External wall area (m2)

30.4

132.7

Shape factor

0.70

0.75

Main wall U-value (W/m2.°C)

0.57

0.68

Planar thermal bridge U-value (W/m2.°C)

1.12

0.86

Roof area

80.1

Main roof U-value (W/m2.°C)

0.42

Window area (m2)

12.2

28.6

Main window U-value (W/m2.°C)

3.1

2.9

Main window orientation

NE

NW and SW

Main window shading device

External roller blinds, except 1 glazed door with internal curtains.

External roller blinds

Nominal air change rate (infiltration)

0.94 ach’1

1.1 ach-1

Thermal inertia

high

high

Other characteristics

— Garage under the floor.

— Shading from nearby buildings

— 2 floors, incl/ garage

— No relevant obstructions

Table 3: Main characteristics of the selected climates

Climatic Zone

solar radiation [kWh/m2]

Location

Heating

Heating

Winter, on

Summer, on

Winter

Summer

degree-days

months

South surface

Horizontal surface

per month

June to September

Braganja

I3

V2 N

2850

8

90

790

Evora

I1

V3 S

1390

5.7

108

820

Faro

I1

V2 S

1060

4.3

108

820

Guarda

I3

V1 N

2956

8

90

730

Lisboa

I1

V2 S

1190

5.3

108

820

Penhas Douradas

I3

V1 N

3400

8

90

730

Viana do Castelo

I2

V1 N

1760

6.3

92

730

Table 4: Heating, cooling and DWH equipment scenarios considered

Scenario

Ambient heating

Ambient cooling

Domestic hot water

Eqpt. 1

Gas boiler

Heat pump

Gas boiler

Eqpt. 2

Gas boiler

Heat Pump

Solar collector + gas boiler

image153

1st International Congress on Heating, Cooling, and Buildings, 7th to 10th October, Lisbon — Portugal /

Eqpt. 3

Heat pump

Heat pump

Electrical resistance

Eqpt. 4

Heat pump

Heat pump

Gas boiler

Eqpt. 5

Heat pump

Heat pump

Solar collector + electrical resistance

Eqpt. 6

Heat pump

Heat pump

Solar collector + gas boiler