Солнечная и другая альтернативная энергия

Солнечная и другая альтернативная энергия

Портал о солнечной и другой современной альтернативной энергии. Солнечные батареи, ветровые генераторы, батарейки, аккумуляторы, современные элементы питания и современные способы зарядки. More »

Солнечная и другая альтернативная энергия

Солнечная и другая альтернативная энергия

Портал о солнечной и другой современной альтернативной энергии. Солнечные батареи, ветровые генераторы, батарейки, аккумуляторы, современные элементы питания и современные способы зарядки. More »

Солнечная и другая альтернативная энергия

Солнечная и другая альтернативная энергия

Портал о солнечной и другой современной альтернативной энергии. Солнечные батареи, ветровые генераторы, батарейки, аккумуляторы, современные элементы питания и современные способы зарядки. More »

Солнечная и другая альтернативная энергия

Солнечная и другая альтернативная энергия

Портал о солнечной и другой современной альтернативной энергии. Солнечные батареи, ветровые генераторы, батарейки, аккумуляторы, современные элементы питания и современные способы зарядки. More »

Солнечная и другая альтернативная энергия

Солнечная и другая альтернативная энергия

Портал о солнечной и другой современной альтернативной энергии. Солнечные батареи, ветровые генераторы, батарейки, аккумуляторы, современные элементы питания и современные способы зарядки. More »

 

СРАВНИТЕЛЬНЫЕ ХАРАКТЕРИСТИКИ КОЛЛЕКТОРОВ

Соотношение (3:2), полученное из уравнения Хот — теля — Уиллера — Блиса, определяет общую тепловую эффективность коллектора и может быть использовано

для сравнения характеристик коллекторов различного типа. Зависимость КПД коллектора от параметра (Гср—

— Тжр) G~[2] для четырнадцати различных типов коллек-3

тора по данным, опубликованным в 1976 г., показана на] рис. 3.22. Вероятно, что такая форма представления дан-^ ных будет иметь все большее значение, поскольку во всех странах вводятся национальные стандарты, регла­ментирующие характеристики коллектора.

СРАВНИТЕЛЬНЫЕ ХАРАКТЕРИСТИКИ КОЛЛЕКТОРОВ

Рис. 3.22. КПД солнечных коллекторов различного типа.

У — струйный коллектор; 2 — коллектор с тепловой трубой; 3 и 4 — коллекторы •: Хейвуда с одинарным и двойным остеклением соответственно; 5 — коллектор, j обеспечивающий небольшое повышение температуры; 6 — коллектор фирмы «Ханиуэлл»(два просветляющих покрытия, селективный); 7 — коллектор с теп-] ловой ловушкой; 8 — воздухонагреватели конструкции Лефа и Хейвуда; 9 — вакуумированный трубчатый коллектор фирмы «Филипс»; 10 — вакуумирован — ный трубчатый коллектор фирмы «Оуэнс-Иллинойс»; 11 — коллектор фирмы: «Ханиуэлл» с двойным остеклением; 12 — коллектор фирмы «Ханиуэлл* с двойным остеклением и селективной поглощающей поверхностью; УЗ—кол­лектор типа РРС с двойным остеклением и селективным покрытием.

Характеристики всех типов коллектора, кроме двух простейших —коллектора для небольшого повышения температуры [40] и струйного [46, 87],—проходят через прямоугольник, ограниченный значениями КПД от 50 до 70% и значениями параметра (Тср — ?0кр) G~] от 58

0,03 до 0,05. Следовательно, при интенсивности падаю­щей радиации более 500 Вт/м2 все эти нагреватели бу­дут иметь почти одинаковую производительность при нагреве рабочей жидкости до температуры, на 15— 30 °С превышающей температуру окружающей среды. Указанный диапазон температур наиболее характерен для установок в коммунально-бытовой сфере. Коллек­тор струйного типа и коллектор для небольшого повы­шения температуры не приемлемы в качестве источника тепла при высокой температуре, поскольку максимальна возможное повышение температуры, по-видимому, со­ставляет около 60°С. Обладающий хорошими эксплуата­ционными качествами промышленный коллектор плос­кого типа фирмы «Ханиуэлл» с двумя просветляющими стеклянными покрытиями и селективной поверхностью поглощающей пластины [88] и более простой по кон­струкции коллектор с тепловой ловушкой [46] имеют практически одинаковый КПД, хотя характеристики последнего следовало бы оценить в условиях эксплуата­ции. Судя по первым опубликованным результатам, к концу 70-х | годов можно ожидать значительного улуч­шения характеристик составного параболического кон­центратора [89] и коллектора с тепловой трубой [74]. Оба эти коллектора интенсивно разрабатываются в рам­ках научно-исследовательских программ США. Вакуу — мированные трубчатые коллекторы [24, 69] не только прекрасно работают в условиях хорошей радиации, обес­печивая высокие перепады температур, но и при плохой радиации имеют хорошие характеристики. Результаты работы Хейвуда [3] по определению характеристик кол­лектора с двойным и одинарным остеклением могут быть использованы в качестве эталонных для всех прос­тых плоских коллекторов, тогда как коллектор PPG [90] принадлежит к числу более совершенных, выпус­каемых промышленностью устройств. Простые воз­духонагреватели [3, 81] имеют относительно хорошие характеристики по сравнению с обычными водонагрева­телями.

Хотя кривые на рис. 3.22 основаны на уравнении со многими упрощающими допущениями, такая форма представления данных позволяет объективно сравнивать между собой коллекторы, испытанные в разных районах при весьма различных уровнях падающего солнечного излучения. Однако она не дает возможности оценить

или сравнить экономические показатели, и коллекторы с весьма близкими тепловыми характеристиками могут по меньшей мере вдвое отличаться по стоимости. Кроме того, данный анализ не позволяет определить еще один важный с практической точки зрения параметр — рас — j четный срок службы коллектора.

ВОЗДУХОНАГРЕВАТЕЛИ

Количество научных исследований и конструкторс­ких работ по солнечным воздухонагревателям. [7, 78] значительно меньше, чем по системам водонагрева, хотя есть много областей применения, где более целесообраз­но использовать воздух в качестве теплоносителя, на­пример для сушки сельскохозяйственных продуктов на небольших широтах или для отопления помещений на более высоких широтах. Воздухонагреватели имеют три преимущества, заслуживающих особого внимания:

воздух не замерзает;

последствия утечки воздуха значительно менее серь­езны, чем последствия утечки воды;

проблема коррозии в системах из разнородных ме­таллов и аккумуляторах практически отсутствует.

Однако физические свойства воздуха в данном слуг чае менее благоприятны, чем воды. Его плотность и теплоемкость крайне низки, а сечения каналов в воздуш­ных системах гораздо больше, чем у водяных трубопро­водов.

В простых воздухонагревателях можно использовать почти любую поверхность нагрева, которая может быть окрашена в черный цвет. На рис. 3.20 показаны три ос­новных типа такого нагревателя с одинарной прозрач­ной изоляцией. В коллекторе на рис. 3.20,а воздух дви­жется в промежутке между прозрачным покрытием и поглощающей пластиной. В нагревателе на рис. 3.20,6 воздушный зазор между прозрачным покрытием и по­глощающей пластиной герметизирован для уменьшения конвективного теплообмена, а канал находится за по­глощающей пластиной. В нагревателе на рис. 3.20,в по­токи воздуха либо разделены, либо с целью предвари­тельного подогрева воздух подается в наружный канал,

а затем проходит по внутреннему каналу. Прекрасным примером солнечного воздухонагревателя, сделанного из простых материалов, является установка в Гуджарате с площадью коллектора более 500 м2 [79], где воздух проходит через окрашенную в черный цвет мелкую ме­таллическую стружку, представляющую собой отходы металлорежущего производства. Коллектор с двойным остеклением имеет расчетный КПД около 45% при тем­пературе, на 65 °С превышающей температуру окружаю­щей среды. В ранней работе Лёфа [80] исследовался

Подпись:Подпись: 1 — наружное покрытие; 2 — воздушный канал; 3 — пластина коллектора; 4 — теплоизоляция; 5 —наружный воздушный канал; 6 — внутренний воздушный І канал; 7 — изолированный воздушный слой.ВОЗДУХОНАГРЕВАТЕЛИ1 5 63

7-

______ хл__

г*

Шк

коллектор с перекрывающими друг друга черными стек — лянными пластинами, накрытыми сверху одним, двумя і или тремя слоями прозрачной изоляции. Впоследствии такие коллекторы были установлены на крыше солнеч — : ного дома в Колорадо и его энергетические показатели за отопительный сезон 1959—1960 гг. были опубликова-1 ны в печати [81]. После 16-летнего периода практичес­ки безаварийной работы эта система была исследована j вновь в 1976—1977 гг. [82]. Важные цаучно-исследова-1 тельские работы по солнечным воздухонагревателям проводились также в Австралии [61, 83], где в начале. 60-х годов впервые были применены селективные по­верхности с V-образной конфигурацией канавок (см. рис. 3.2, и).

Наряду с применением селективных поверхностей повышение эффективности может быть достигнуто пу­тем регулирования скорости воздуха и использования двухходовой схемы отвода тепла [84], предусматриваю­щей движение воздуха между двумя стеклянными по-1 крытиями обычного в других отношениях двухстеколь­ного коллектора. КПД данной двухходовой системы оказался на 17% больше по сравнению с обычной схе-1 мой отвода тепла. В других системах [85] для улучше — 56

ния теплопередачи используются ребристые поверхнос­ти различного типа (см. рис. 3.2, з). В работе [86] рас­смотрена попытка применения сотовых структур в соче­тании с пористой подложкой. Принципиальная схема v включения воздушного коллектора в систему отопления и охлаждения, заимствованная из работы Лёфа [78], показана на рис. 3.21. В данном случае используется ак­кумулятор галечного типа с насадкой из обычной,

ВОЗДУХОНАГРЕВАТЕЛИ

Рис. 3.21. Принципиальная схема воздушного солнечного отопления. 1 — солнечный коллектор; 2 — вентилятор и блок управления; 3 — вентиль на­правления потока; 4 — аккумулятор.

тщательно отобранной гальки. С помощью вентилятора и блока управления можно реализовать любой из сле­дующих режимов работы:

обогрев дома непосредственно от коллектора; обогрев дома от аккумулятора; аккумулирование тепла из коллектора; охлаждение аккумулятора холодным наружным воз­духом;

охлаждение дома от аккумулятора.

Двойное применение аккумулятора как для охлаж­дения летом, так и для обогрева зимой является допол­нительным положительным фактором. Заметим, что на схеме не показан вспомогательный источник энергии.

ЦИЛИНДРИЧЕСКАЯ СИСТЕМА КОЛЛЕКТОР — АККУМУЛЯТОР

Подпись: Рис. 3.19. Цилиндрический солнечный коллектор, совмещенный с баком-аккумулятором. / — внутреннее прозрачное покрытие; 2 — наружное прозрачное покрытие; Зй цилиндрический аккумулятор.

Автономный цилиндрический солнечный коллектор, совмещенный с баком-аккумулятором, был разработан в Новой Зеландии Винкзом [76, 77]. Принцип работы

показан на рис. 3.19. Когда солнечное излучение дости­гает черной поверхности коллектора, вода в узком коль­цевом зазоре поднимается, а более холодная водіа вну^ ри аккумулятора опускается, т. е. отвод тепла осущесг 54

вляется путем естественной циркуляции. Последние ре­зультаты испытаний [77] показали, что по сравнению с плоским коллектором данная система имеет лучшие ха­рактеристики, если их определять по фактической пло­щади наружного цилиндра. Если же принять во внима­ние площадь, необходимую для размещения цилиндров на расстоянии друг от друга, то эффективность работы плоского и цилиндрического коллекторов будет практи­чески одинакова.

НАГРЕВАТЕЛЬ С ПЛАВАЮЩИМ ПЕРЕКРЫТИЕМ

Идея этой разработки [75] заключалась в том, что вследствие диффузного характера солнечной радиации Целесообразно, даже в ущерб повышению эффективнос­ти, создать простой, дешевый и удобный в монтаже кол­лектор. Однако эксперименты показали, что его эффек­тивность сравнима с эффективностью других горизон­тальных плоских коллекторов. Основные элементы кон­струкции показаны на рис. 3.18. Плавающее перекрытие

представляет собой слой изоляции, предпочтительно из пеностекла, расположенный н, а поверхности аккумуля­тора горячей воды. Солнечная энергия поглощается во­дой, которая в виде тонкой пленки протекает сверху по изоляции. Сжимающая пластина, которая может быть выполнена из прозрачного или черного стекла, пласт­массы или металла, лежит непосредственно на поверх-

НАГРЕВАТЕЛЬ С ПЛАВАЮЩИМ ПЕРЕКРЫТИЕМРис. 3.18. Нагреватель с плаваю­щим перекрытием, /—прозрачная изоляция; 2 — металли­ческая пластина; 3 — сжатая водяная пленка между пластиной и перекры­тием; 4 — аккумулятор горячей воды; 5 —плавающее перекрытие; 6 — насос.

ности водяной пленки. После предварительных испыта­ний нагревателя квадратной формы площадью 0,836 м2 был успешно разработан промышленный вариант уста­новки площадью 46,5 м2. На небольших широтах эта установка может использоваться в качестве источника тепла при достаточно низкой температуре, а на более высоких широтах в комбинации с долговременным ак­кумулирующим устройством.

КОЛЛЕКТОР С ТЕПЛОВОЙ ТРУБОЙ

Основные элементы тепловой трубы показаны на рис. 3.17. Небольшое количество жидкости, которая на! ходится в равновесии со своим насыщенным паром, за! паяно внутри трубы. При подведении тепла к одному ия концов тепловой трубы жидкость испаряется, а избытом пара конденсируется на другом, необогреваемом конца трубы. Конденсат возвращается к обогреваемому конця трубы под действием капиллярных сил. В некоторых солі нечных нагревательных установках возврат конденсата может осуществляться под действием гравитационным сил. Поскольку процесс испарения и конденсации проис!

ходит при постоянном давлении и соответственно при постоянной рабочей температуре, то тепловая труба способна передавать тепло при очень малых разностях температур внутри трубы. Существует неизбежное сни­жение эффективности при переносе тепла от тепловой трубы к вторичному контуру. Важная программа иссле­дований режимов работы коллектора с тепловой трубой

КОЛЛЕКТОР С ТЕПЛОВОЙ ТРУБОЙ

Рис. 3.17. Коллектор, работающий на принципе тепловой трубы.

1 — капиллярная структура.

выполнялась в США с 1974 г. [72] . В Нидерландах в 1975 г. была проведена работа, представленная Фрэн — кином [73], который особое внимание уделил изучению скорости изменения тепловых характеристик при изме­нении солнечной радиации. Другое преимущество теп­ловой трубы состоит в том, что она может содержать жидкость с более низкой, чем у воды, температурой замерзания. Коллектор с тепловой трубой был также представлен на конкурс Ассоциации развития медной промышленности в Великобритании [60]. Предвари­тельные рабочие характеристики, указанные заводом — изготовителем [74], были весьма разочаровывающими; так, например, общий КПД оказался несколько хуже, чем у одностекольного неселективного плоского коллек­тора, испытанного Хейвудом [3] в 50-х годах.

ВАКУУМИРОВАННЫЕ СИСТЕМЫ

Возможным ПОДХОДОМ К Проблеме снижения ТЄПЛО’ вых потерь при высоких температурах (80—150 °С) яв ляется применение вакуумированного коллектора. Ис-J пользование в условиях Далласа (штат Техас) коллек тора с умеренным вакуумом (133 Па) в сочетании < обычными селективными поглощающими поверхностями! продемонстрировало возможность работы при темпера-j туре 150 °С с дневным КПД выше 40% [66, 67]. Был(] установлено, что расстояние между поглощающей по верхностью и стеклянным покрытием решающим обра зом влияет на подавление потерь путем естественной конвекции и теплопроводности. Практическое испольЯ зование этой системы связано с различными трудности’ ми, которые, однако, носят не принципиальный харак; тер. Первоначальные испытания выявили дефекты yd лотнений, однако была разработана технология приме­нения высокотемпературных кремнийорганических гер’ метиков. Акриловые покрытия, которые использовались| в первых опытах, были заменены закаленным или хими; чески упрочненными стеклянными покрытиями. На ОСНСІ ве этой системы в 1975 г. был создан опытно-промыш-| ленный образец [68].

Несколько торговых групп разработали вакуумиро — ванные трубчатые коллекторы [24, 69, 70]. На рис. 3.15 показан модуль коллектора фирмы «Оуэнс-Иллинойся впервые продемонстрированный в 1975 г. Каждый мо-

дуль состоит из 24 труб диаметром 50 мм и длиной ™тт7тО!™,,В1куумир0Данны!1 тРУбчатый

1,12 м. В 1975 г. было установлено несколько крупный 4 ‘ р Фирмы * уэнс-Иллинойс».

Подпись:Подпись:промышленных систем, включая систему площадьЯ ТИч

46,5 м2 в Лос-Анджелесе и систему площадью 93 м2 н«| ется пРипаян к наружной трубе. Теплоноситель пода- административном здании в Детройте. Поперечное сеЯ 3аН() еРез подводящую внутреннюю трубу. Было пока — ние трубы изображено на рис. 3.16, где для сравненЯ расп’ол™ недоРогая Диффузно отражающая поверхность показана также труба коллектора фирмы «ФилипЯ энепги 0жен’ная сзаДи Труб, почти удваивает количество Давление в трубе коллектора «Оуэнс-Иллинойс» сост» липе» И’ падаю1цея на трубу [69]. В коллекторе «Фи — ляет менее 10-2 Па, а пропускательная способность Я тт, л тяРеДУсмотрена система

ется внутреннее прозрачное селективное покрытие, а на! нижней половине — зеркально отражающая поверхность^ Прозрачное селективное покрытие из окиси индия 1п203 имеет пропускательную способность т=0,85 и! отражательную способность р»0,9 по отношению к ин-1 фракрасному излучению, соответствующему температу-1 рам поглощающих труб от 300 до 400 К. Компания! «Филипс» обращала особое внимание на то, чтобы эта

ВАКУУМИРОВАННЫЕ СИСТЕМЫ

Рис. 3.16. Поперечное сечениЯ вакуумированных трубчатым коллекторов фирм «Филипс» (а) и «Оуэнс-Иллинойс» (б)М

1 — наружная труба; 2 — вакууме 3 — отражатель; 4 — поглощающие! трубы; 5 — подводящая труба. Я

система могла обеспечить хорошие характеристики при! диффузной радиации в условиях Северной. Европы. Цея лесообразность вакуумирования коллектора этого типа! до давления ниже 10-2 Па была рассмотрена в работе! выполненной в Австралии [71], согласно которой уме! ренный вакуум порядка 0,6-10-2 Па не приводит к улуч! шению характеристик коллектора. I

Важная особенность, свойственная всем трубчатым! коллекторам, состоит в том, что потери при отражении прямого излучения будут значительно меньше, чем в| коллекторах с плоской остекленной поверхностью. Эта позволяет увеличить использование прямой радиации pal но утром и в конце дня.

КОЛЛЕКТОР С НЕПОДВИЖНЫМ ОТРАЖАТЕЛЕМ И СЛЕДЯЩИМ. ПРИЕМНИКОМ (SRTA)

Коллектор, который показан на рис. 3.14, представ­ляет собой сферический отражатель, расположенный неподвижно и обращенный к солнцу. Он имеет линей­ный приемник, который может следить за положением солнца благодаря простому вращательному движению вокруг центра кривизны отражателя [64, 65]. Опыт ра­боты головных образов показал, что применение подоб­ных установок мощностью от 10 до 100 МВт в промыш­ленном масштабе позволило бы вырабатывать более де­

Подпись:Рис. 3.14. Солнечный коллектор
с неподвижным отражателем и
следящим приемником.

шевую электроэнергию, чем на АЭС. К достоинствам применения SRTA в быту относится то, что такая систе­ма может быть использована как для получения элек­троэнергии, так и для горячего водоснабжения. Кроме того, рабочая жидкость может быть нагрета до высокой температуры, что позволяет уменьшить объем аккуму­лирующей системы. Наконец, отсутствует опасность раз — 4-1240 49

г

 

 

Подпись:рушения больших застекленных поверхностей. Основным недостатком установки является то, что она может ио пользовать только прямую радиацию. В странах с вы­сокой долей прямой радиации SRTA может широко при­меняться для энергообеспеченности различных мелких; потребителей.

НЕКОТОРЫЕ ОТРАЖАЮЩИЕ И КОНЦЕНТРИРУЮЩИЕ СИСТЕМЫ. БЕЗ СЛЕЖЕНИЯ ЗА СОЛНЦЕМ

Составной параболический концентратор. В боль]

шинстве применяемых на практике солнечных энерге! тических установок степень концентрации солнечного; излучения* должна составлять около 10 или более, что] бы достигнуть высоких температур. Это можно сделать? с помощью различных следящих систем, но было бы значительно выгоднее, если бы требуемая степень кон] центрации достигалась неподвижным коллектором. Ин! тересная разновидность концентратора, первоначальна названного идеальным цилидрическим световым коллека тором, была предложена в 1974 г. Уинстоном [54]. Эт| разработка основывалась на наблюдениях излучения Черенкова в экспериментах в области физики части! высоких энергий, проводившихся в США [55] и СССІ

[56]. На рис. 3.11 показано поперечное сечение кон­струкции, известной под названием составного парабо­лического концентратора. Степень концентрации вплоть до 10 может быть достигнута без суточного слежения, если же допустимы меньшие значения степени концен­трации, примерно 3, то может не потребоваться даже сезонная корректировка. Как показано на рис. 3.11, фо­кус правой параболы лежит на основании левой парабо­лы и наоборот. Ось каждой параболы наклонена к вер­тикальной оптической оси.

Собирание тепла может осуществляться с помощью цилиндрических коллекто­ров, обладающих свойства­ми абсолютно черного тела и расположенных на осно­вании параболической кон­струкции*.

Спиральный или «раку­шечный» коллектор. Пре­образование составного па­раболического концентра­тора в односторонний пара­болический профиль, закан­чивающийся круговым отражателем, было описано Раб — лом [57]. Как показано на рис. 3.12, спиральный коллек­тор состоит из изогнутых по спирали профилей. Попадая в спираль, прямая радиация не может выйти за ее преде­лы, а продолжает отражаться в глубь спирали, пока не достигнет поглощающего элемента, изображенного на рис. 3.12 в виде круглой трубы. Для солнечных термо­электрогенераторов Смит предложил создать па­раболический входной участок, переходящий в спи­раль, и вакуумированный промежуток вокруг коллекто­ра [58]. Заявка на изобретение отражателя, профиль которого рассчитан таким образом, что все излучение, Диффузное или зеркальное, которое попадает в устрой­ство через входное сечение, должно в конце концов по­пасть на поглощающий элемент конструкции и не мо­жет быть отражено наружу, было зарегистрировано в

* Устройства, аналогичные конструкции, показанной на рис. 3.11 в терминологии, которая применяется в СССР, называются фокли — нэми. Если же такой концентратор представляет собой поверхность вРащения, то он называется фоконом. (Прим. ред.)

Подпись: Рис. 3.12. Солнечный коллектор с отражателем, изогнутым по спирали. / — отражающая поверхность; 2 —труба коллектора.

Австралии [59], а один из участников конкурса по сол­нечному отоплению, проводившегося в 1975 г. Ассоци­ацией развития медной промышленности в Великобри­тании, разработал логарифмическую или равноуголь­ную спиральную систему [60].

Трапецеидальный коллектор с небольшой степенью концентрации. Небольшая степень концентрации сол­нечной энергии может быть достигнута за счет того, что излучение, падающее на некоторую поверхность, отра­жается от нее на площадь меньших размеров. Поскольку фокусирование не требуется, то можно использовать как прямую, так и диффузную радиацию. Простой, легкий в

Подпись: 4 2 6 Рис. 3.13. Трапецеидальный сол-<
нечный коллектор.

1 — поглощающая пластина коллекто-} ра; 2 — прозрачное покрытие; 3 —отра­жающая поверхность; 4 — изоляция.

изготовлении коллектор этого типа состоит из ряда па­раллельных трапецеидальных неподвижных желобов,| как показано на рис. 3.13. Боковые стенки желобков имеют высокую отражательную способность, а их осно-j вания являются поглощающей поверхностью коллектор ра. Поскольку площадь поглощающей поверхности меньше общей площади коллектора, то потери тепла уменьшаются. Для описания этого эффекта можно ис] пользовать понятие «направленной селективности», чтр было продемонстрировано Холландсом для желобкої 48

V-образной конфигурации [61]. Результаты, представ­ленные в 1975 г. Бэнеротом и Хауэллом [62, 63], были использованы для разработки расчетных номограмм применительно к различной геометрии коллекторов и доказательства того, что этот тип коллектора мог бы иметь широкие перспективы для применения в установ­ках абсорбционного охлаждения, поскольку возмож­ность получения полезной энергии с помощью плоских коллекторов ограничена температурами 100—150 °С.

ПЛОСКИЕ КОЛЛЕКТОРЫ

Коллектор с тепловой ловушкой. Эта система впер| вые была предложена Коблом [45] и разработана в уш 42

аерситете штата Нью-Мексико [46]. В ней используется прозрачное твердое тело (метилметакрилат), прилегаю­щее к обычной плоской поглощающей пластине, как по­казано на рис. 3.9. Метилметакрилат обладает высокой пропускательной способностью в видимой и ближней ин­фракрасной областях спектра в сочетании с весьма низ­кой пропускательной способностью в диапазоне более длинноволнового излучения и малой теплопроводностью. Сравнительные испытания, проведенные в университете штата Нью-Мексико, пока­зали, что такой коллектор имеет лучшие характери­стики, чем обычный плоский коллектор и коллектор струйного типа. Все три кол­лектора испытывались при рабочих температурах от 38 до 80°С. В этом диапазоне коллектор с теп­ловой ловушкой имеет бо­лее высокий КПД :и может больше времени по­лезно работать в течение дня, в меньшей степени реаги­рует на прерывистость поступления солнечной радиации, поскольку обладает относительно высокой инерцион­ностью и, по-видимому, является весьма перспективным для использования в качестве высокотемпературного коллектора.

Подпись: Рис. 3.9. Солнечный коллектор с тепловой ловушкой. / — остекление; 2 — воздушный зазор; 3 — метилметакрилат; 4 — пластина коллектора; 5 — изоляция. Подпись: 'материалов, размещенных между прозрачным покрытием и поглощающей пластиной, является эффективным способом улучшения характеристик коллектора благодаря подавлению естественной конвекции и сильному уменьшению потерь излучением в инфракрасной части спектра. Ячеистый материал должен иметь низкую теплопроводность, чтобы уменьшить кондуктивные потери тепла от поглощающей пластины к наружному покрытию. Теоретические исследования [47] показали, что тонкий слой прозрачного пластмассового ячеистого материала может повысить КПД коллектора по меньшей мере до 60% при средней температуре коллектора 365 К по сравнению с измеренным значением 43% у обычного коллектора с двойным остеклением и неселективной поверхностью. Полагают, что это может быть дос-
Системы с сотовой структурой. Применение ячеистых

тигнуто без увеличения стоимости коллектора, так как! при наличии сотовой структуры требуется ТОЛЬКО ОДНО I прозрачное покрытие. Испытания коллектора с сотовой структурой из полиэтилена, представляющей собой! множество ячеек со стороной квадрата 25,4 мм и глу­биной 76,2 мм [48], показали, что такая структура эф­фективно подавляет естественную конвекцию, когда кол-! лектор занимает наклонное положение. Ранее работа ог-; раничивалась испытаниями горизонтально расположен-! ного коллектора. і

Подпись: казаны на рис. 3.10. Поглощающая пластина состоит из тонких стальных листов, соединенных роликовым свар] ным швом по периметру и точечной сваркой в центре,

Исследователи «з университета в Лос-Анджелесе (штат Калифорния) являются сторонниками примене-! ния стекла в качестве материала с сотовой структурой^ [49, 50], поскольку оно имеет низкую теплопроводность, недорого и легко доступно. Оптические свойства стекла превосходны, поскольку оно обладает очень низкой пог-‘ лощательной способностью в солнечном спектре, а для прошедшего и отраженного потоков прямого солнечного! излучения оно является зеркальным, в результате чего, излучение сохраняет направление к поглощающей плас­тине. Для сотовой структуры, состоящей из круглых,! труб, основными конструктивными параметрами являют-‘ ся внутренний диаметр, который должен быть меньше 150 мм, и длина, которая не должна превышать учет-1 верейного диаметра. Другие рассматриваемые ячеистые материалы имеют отражающие поверхности, но если они! металлизированы, то покрытие должно быть очень тонн ким, чтобы уменьшить потери тепла теплопроводностью.] Коллектор как элемент строительной конструкции. При сооружении любого нового объекта или замене! крыши существующего здания можно получить значи­тельный экономический эффект, если солнечный кол­лектор использовать одновременно в качестве строитель­ного элемента кровли. Критерии конструирования таких коллекторов, разработанные Лос-Аламоской научной ла-1 бораторией [51], включают хорошие тепловые характер ристики, экономичность в условиях промышленного производства, применение дешевых, легко доступных ма| териалов, большой срок службы и возможность просто! го монтажа и ремонта местными строительными рабочий ми. Основные особенности конструкции коллектора по!

После сварки эти листы раздувались под давлением с целью образования каналов для потока теплоносителя. Нижний удлиненный лист пластины имеет три изгиба, об­разующих опорную конструкцию. Верхний лист согнут под прямым углом к поглощающей пластине, в результа­те чего соседние модули могут быть легко соединены меж­ду собой с помощью U-образных наконечников. Два стеклянных покрытия вставлены в профильную раму и поддерживаются по краям опорами из неопрена или си — ластика. Каждый модуль имеет около 0,6 м в ширину

ПЛОСКИЕ КОЛЛЕКТОРЫРис. 3.10. Солнечный коллектор как элемент строительной конструкции.

1 — остекление; 2 — опоры из неопрена или силастика; поддерживающие стеклянные покрытия; 3 — наконечник; 4 — поверхность коллектора; 5 — профильная рама; 6 — вспененная или стекловолокнистая тепло­изоляция; 7 — опорный элемент конструк­ции.

и от 2,4 до 6,1 мв длину. Применение наконечников, создающих сжатие и уплотнение стыков, экономит вре­мя, которое в противном случае затрачивалось бы на работы по уплотнению, выполняемые вручную на стро­ительной площадке. Вспененная тепловая изоляция уве­личивает жесткость панели. Прозрачная изоляция вы­полняется из стекла. Одна из причин применения стекла, а не пластмассы связана с проблемами уплотнения кол­лектора и компенсации расширений, которые могут воз­никнуть в связи с относительно более высокими коэф­фициентами теплового расширения пластмассовых мате­риалов. Исчерпывающие опытные данные, включая вли­яние атмосферной и внутренней коррозии, а также устойчивости материалов, были представлены на кон­грессе в Лос-Анджелесе в 1975 г. [52].

Коллекторы с распределенным потоком. Конструк­ция коллектора, в которой удалось устранить избыточ­ное внутреннее давление в каналах с водой, была раз­работана в университете штата Айова [53]. Конструк­цией предусматривается движение потока жидкости

Подпись: Рис. 3.11. Концентрирующий параболический коллектор. 1 — изоляция; 2 — стеклянное по-крытие; 3 — парабола; 4 — фокус параболы; 5 — труба коллектора. Подпись: “Ращения

между двумя параллельными пластинами, одна из кото-[1] рых или обе имеют рифления или углубления какой-ли-И бо иной формы или между которыми размещается по-Д ристая прокладка, например проволочная сетка. Хотя* поток теплоносителя через коллектор направлен вниз, И вся нижняя поверхность поглощающей пластины сопри-* касается с нагреваемой водой. Было показано, что ха-* рактеристики данного коллектора значительно лучше,* чем у некоторых, имеющихся в продаже обычных кол-* лекторов. При расчетной разности температур 52,5 °С* относительно температуры наружного. воздуха и пада-И ющей радиации 750 Вт/м2 полный КПД коллектора с* распределенным потоком при давлении ниже атмосфер-* ного составил 44% по сравнению с 38,4% для обычного* коллектора.’ В качестве материала поглощающей пла-1 стины такого коллектора можно использовать медный! лист толщиной 1,27 мм, прочность которого, по-видимо-] му, достаточна, чтобы противостоять сжимающему уси-] лию, обусловленному разностью атмосферного давления! и давления жидкости. Применение такого тонкого листа! меди значительно снижает сметную стоимость матер и а| лов этих коллекторов в производстве по сравнению с обычными коллекторами.

КОЛЛЕКТОРЫ ДЛЯ НЕБОЛЬШОГО ПОВЫШЕНИЯ ТЕМПЕРАТУРЫ

В настоящее время такие коллекторы в основной применяются для нагрева воды в плавательных бассей нах, но есть много других возможных областей приме* нения, например в тепличном хозяйстве и рыбоводстве Наиболее дешевым, простым и непосредственным споср бом нагрева любого открытого плавательного бассейн! является прямое поглощение солнечной радиации, пада-1 ющей на поверхность бассейна. Если не используются покрытия или любые другие средства, препятствующие потерям тепла с поверхности бассейна, то в летние ме­сяцы температура воды в бассейне в умеренном клима-1 те, как, например, на Британских островах обычно блиШ ка к средней температуре воздуха. Тем не менее летим плавательный сезон может быть начат раньше и закона

чен позднее на один или два месяца в результате осна­щения бассейна системой солнечного водонагрева допол­нительно к прямому нагреву в результате поглощения солнечного излучения. Другой важной задачей является уменьшение тепловых потерь бассейна. Наиболее значи­тельные тепловые потери дает испарение [40], но, к счастью, эти потери могут быть почти полностью устра­нены благодаря применению однослойного тонкого по­крытия поверхности. Эксперименты в Австралии [41] и университете штата Флорида [42, 43] показали, что ис­пользование плавающего прозрачного пластмассового покрытия может повысить среднюю температуру воды в бассейне более чем на 5°С по сравнению с аналогичным необогреваемым бассейном. В условиях Великобритании повышение температуры не столь значительно отчасти из-за худших радиационных и климатических условий, а отчасти из-за большого количества осадков, вызыва­ющих частичное затопление покрытия и снижение эф­фективности его применения. Значительное количество тепла теряется также в результате конвекции и излуче­ния. Вода в бассейнах, стены которых расположены вы­ше уровня земли, как правило, холоднее, чем в обыч­ных бассейнах. Потерями теплопроводностью в обычном бассейне можно пренебречь, поскольку практически все тепло, уходящее в землю, возвращается обратно в бас­сейн, когда температура воды в нем падает [42].

В тех случаях, когда необходимо повышение темпе­ратуры всего на несколько градусов, вполне можно ис­пользовать простой незастекленный неизолированный коллектор, при этом во многих конструкциях применя­ется черный гофрированный лист, по желобкам которо­го стекает вода, подаваемая из перфорированной тру­бы. Известные под названием «струйных», такие кол­лекторы широко использовались в США Томасоном, и в гл. 4 рассмотрены некоторые области их применения. Над гофрированным листом могут быть расположены черные покрытия различного типа или одинарный оцин­кованный лист, окрашенный в черный цвет и обернутый прозрачной пластмассой, при этом вода течет как по лицевой, так и по обратной стороне листа [44]. Для дос­тижения высокой эффективности желательно получить Равномерную тонкую пленку воды. Способ ее получения 0писан в гл. 8. В этом случае черный лист помещается Над листом из полиэтиленового набивочного материала,

представляющим собой однородную матрицу с равно­мерно распределенными пузырьками воздуха цилиндри­ческой формы. Вода течет между двумя листами. Для получения более высокой температуры на выходе необ­ходимо прозрачное покрытие. На рис. 3.8 показан экс­периментальный коллектор с покрытием из прозрачной пластмассы. Некоторые изготовители в настоящее время

КОЛЛЕКТОРЫ ДЛЯ НЕБОЛЬШОГО ПОВЫШЕНИЯ ТЕМПЕРАТУРЫ

Рис. 3.8. Экспериментальный солнечный коллектор с пластмассовой прозрачной изоляцией.

используют эти покрытия в качестве стандартных элс ментов для коллекторов, обеспечивающих небольшое ПС вышение температуры.