Fish Hatchery and Seedling Greenhouse Hatchery

Tilapia are a tropical fish and require warm water. As a result, shipping fingerlings during the winter is extremely risky. Therefore, the project will produce all needed fingerlings on-site. The project will require from 1100 to 3300 fingerlings per week. It can also act as a regional resource for others that require fingerlings as well. The bulk of the equipment needed to breed these fingerlings is already in place. Whereas the hatchery is somewhat labor intensive, it does guarantee a continuous supply of fingerlings. The males are kept in tanks by themselves and the females are brought to them to mate. Once mating has stopped and the female has a mouth full of eggs, the males are removed and the female is left alone and undisturbed to hatch her young (about 72 hours). After this time, the hatchlings will remain in the mother’s mouth for another 3-7 days, taking short excursions outside to feed on minute particulates and then dart back inside. At a time determined by the mother, she spits them all out and she will accept feed again. When this occurs, she is removed to an isolation tank and full fed until she regains weight. She is then ready to breed again. The particular variety of tilapia to be used is patented and produces all males (males grow 40% faster than females), which are a bright red in color. They are a very forgiving fish, adaptable to many different cultural conditions and, from past experience with them, quite easy to breed and raise. Presently, there is enough room for future expansion to other species, i. e., giant Australian Red Claw crawfish (Cherax quadricarinatus — a lobster-sized crawfish that lives in fresh water), giant freshwater prawns (macro — braccium Rosenbergii) which grow to one pound, and a variety of giant sunfish (bream), which grows to a weight of 5 pounds. All these species, except for sunfish, are tropical or subtropical and must be bred on-site to have a year-long supply. The sunfish will remain isolated from the environment, since interbreeding with native varieties will dilute their genetic uniqueness, resulting in much smaller, stunted fish. The hatchery will be connected to its own smaller aquaponics greenhouse, which will provide biofiltration and a use for the waste generated from the hatchery. It will also add to the weekly harvest of vegetables. Breeding fish on-site will also enable the project to add genetics to its teaching curriculum.