Limit viscosity

Limit viscosity (qlim) corresponds to the viscosity of a fluid at the maximum dispersion of the aggregates under the effect of the shear rate (Tixier & Guibad, 2003). The limit viscosity is estimated through the rheogram, when the dynamic viscosity becomes linear and constant. This parameter has been shown to be of great value when studying the rheological characteristics of sludge, since it determines the level of influence of important factors such as the total solids fraction (TS; Lotito et al., 1997). TS (%) and volatile solids (VS, % of TS) are parameters measured in the biogas process in order to control the amount of solids that may be transformed to methane. Also, Pevere and Guibad (2005) reported that the limit viscosity was sensitive to the physicochemical characteristics of granular sludge, i. e. it was influenced by changes in the particle size or the zeta potential.

1.1 Dynamic yield stress

Yield stress (to) is defined as the force a fluid must be exposed to in order to start flowing. It reflects the resistance of the fluid structure to deformation or breakdown. Rheograms from rotational viscometer measurements are used as a means to calculate yield stress. It can also be obtained by applying rheological mathematical models (section 2.6; Spinosa & Loito 2003). Yield stress is important to consider when mixing reactor materials, since the yield stress is affecting the physico-chemical characteristics of the fluid and impede flow even at relative low stresses. This might lead to problems like bulking or uneven distribution of material in a reactor (Foster, 2002).