Potential of digested manure as a fertilizer

After the anaerobic digestion of manure to produce biogas, a nutrient-rich substrate which is still very beneficial to plants remains. This observation is supported by the findings of Thomsen (2000). These studies agree that only small differences of between 0.5 and 2.0% are usually measurable in the aggregate nutrient concentrations when digested manure is compared to the undigested form. Adelekan et al., (2010) did a comparative study of the effects of undigested and anaerobically digested poultry manure and conventional inorganic fertilizer on the growth characteristics and yield of maize at Ibadan, Nigeria. The pot experiment consisted of sixty (60) nursery bags, set out in the greenhouse. The treatments, thoroughly mixed with soil, were: control (untreated soil), inorganic fertilizer, (NPK 20:10:10) applied at the 120 kgN/ha; air-dried undigested and anaerobically digested manure applied at 12.5 g/pot, or 25.0 g/ pot or 37.5 g/pot, and or 50.0 g/ pot. Plant height, stem girth, leaf area, number of leaves at 2, 4, 6 and 8 weeks after planting (WAP) and stover mass and grain yield were measured. Analysis of variance (ANOVA) at P < 0.05 was used to further determine the relationships among the factors investigated. Generally, results in respect of plants treated with digested manure, were quite comparable with those treated with undigested manure and inorganic fertilizer, right from 2WAP to 6WAP. Stover yield was increased to as much as 1.58, 1.65 and 2.07 times by inorganic fertilizer, digested and undigested manure, respectively while grain yields were increased by only 200% with inorganic fertilizer, but by up to 812 and 933% by digested and undigested manure, respectively. The paper concluded that digested poultry manure enhanced the growth characteristics of the treated plants for the maize variety used. As observed, the order of grain yield was undigested manure > digested manure > inorganic fertilizer. These results agree with those reported by Agbede et al., (2008) for sorghum (Sorghum vulgare), Akanni (2005) for tomato (Lycopersicon esculentum) and Adenawoola and Adejoro (2005) for jute (Corchorus olitorus L).

Organic manures play a direct role in plant growth as a source of all necessary macro and micronutrients in available forms during mineralization. Thereby, they improve both the physical and physiological properties of soil (El Shakweer et al., 1998; Akanni, 2005), thus enhancing soil water holding capacity and aeration (Kingery et al., 1993; Abou el Magd et al., 2005; Agbede et al., 2008). Organic manures decompose to give organic matter which plays an important role in the chemical behavior of several metals in soil through the fulvic and humic acid contents which have the ability to retain metals in complex and chelate forms (Abou el Magd et al., 2006). They release nutrients rather slowly and steadily over a longer period and also improve soil fertility status by activating soil microbial biomass (Ayuso et al., 1996; Belay et al., 2001). They thus, ensure a longer residual effect (Sherma and Mittra, 1991), support better root development and this leads to higher crop yields (Abou el Magd et al., 2005). Improvement of environmental conditions and public health as well as the need to reduce cost of fertilizing crops are also important reasons for advocating increased use of organic manures (Seifritz, 1982). While the practice of anaerobic digestion of biomass for biogas production is increasing, the use of the digested manure for crop production should concurrently be encouraged, judging by its potential to enhance the growth and yield of crops.