Contemporary focus on renewable energy

In contemporary times, a great deal of interest has been generated worldwide regarding the use of biofuels namely biogas, bioethanol and biodiesel for energy supply. The most ambitious goal thus far in respect of the development and exploitation of renewable energy sources appear to be that articulated by the European Renewable Energy Council. According to European Renewable Energy Council EREC (2010) in March 2007, the Heads of States and Governments of the 27 EU Member States adopted a binding target of 20% renewable energy in final energy consumption by 2020 and 100% by 2050. Combined with the commitment to improve energy efficiency by 20% until 2020 and to reduce greenhouse gas emissions by 20% (or respectively 30% in case of a new international climate agreement) against the 1990 level, Europe’s political leaders paved the way for a more sustainable energy future for the European Union and for the next generations. In order to reach the binding overall target of at least 20% renewable energy by 2020, the development of all existing renewable energy sources as well as a balanced deployment in the heating and cooling, electricity and transport sectors is needed. According to estimates of the European renewable energy industry around 40% of electricity demand will be generated with renewable energy sources by 2020 (EREC, 2010). Furthermore, the new Renewable Energy Directive (RED) will undoubtedly stimulate the renewable energy heating and cooling market, and according to EREC’s projections, up to 25% of heating and cooling consumption can come from renewable energy by 2020. Similar kind of awareness is evident in other

regions of the world and cogent efforts are being made to increase the renewable energy share of the energy profile and reduce overdependence on fossil fuels.

For about 3 decades, Brazil has been in the forefront of using renewable energy in the form of bioethanol derived mainly from sugarcane to power fuel-flex vehicles or as oxygenate to gasoline and has made a remarkable success of it. Likewise, the USA has also to some extent used bioethanol to power vehicles. Bioethanol is the biofuel most widely used for transportation worldwide. The global annual production of fuel ethanol is around 40 to 50 billion litres, of which 90 percent is produced by the USA and Brazil from maize and sugarcane respectively (World Bank, 2008). Global ethanol production has seen steady growth since the search for alternatives to petroleum was prompted by the oil crisis of 1973/1974. The USA is now the largest consumer of bioethanol, followed by Brazil. Together they consume 30 billion litres, or three quarters of global production (Licht, 2005). The Economist (2005) reported that as at that time Germany was raising its output of biodiesel by 50% per year; USA was boosting its ethanol production by 30% per year; France aimed to triple its output of biodiesel and ethanol by 2007; China had just built the largest ethanol plant in the world; and also that Brazil was producing around 4 billion litres of ethanol per year, and hoped to export 8 billion litres per year by 2010. China’s Ministry of Science and Technology plans that the country would attain 12 million tonnes of biodiesel production by the year 2020 (GTZ, 2006).

According to OECD (2008), the global ethanol and biodiesel production in 2007 is given in Table 1. Certainly, successes recorded as regards exploitation and use of other biomass for energy supply, will further enhance global energy security. Some of the themes involved in this are discussed in this chapter.

Country

Ethanol

Biodiesel

USA

26,500

1,688

Canada

1,000

97

European Union

2,253

6,109

Brazil

19,000

227

China

1,840

114

India

400

45

Indonesia

0

409

Malaysia

0

330

Others

1,017

1,186

World

52,009

10,204

Source: OECD (2008)

Table 1. Global Ethanol and Biodiesel Production for 2007 (in million litres)