Soybean meal

Soybean meal (SM) is still finding its way within scientific researches towards biobased material (biomaterial) applications. The number of publications on this topic is limited compared to corn gluten meal. SM has been characterized for its chemical composition, moisture content, thermal behavior and infrared spectrum and its potential as a particulate filler in value-added biocomposites was evaluated by compounding with polycaprolactone (PCL) [235]. The composite of PCL/SM (70/30) was prepared by extrusion and injection molding and then tested for mechanical properties such as tensile, flexural and impact. It has been observed that PCL/SM composite exhibited higher tensile/flexural modulus, but lower strength, elongation and impact strength compared to PCL. At the same time, the resulted biocomposite had relatively less cost than PCL itself. Thus, addition of SM to PCL increases the rigidity, but the particle-matrix adhesion needs to be improved.

SM has been plasticized and blended with other polymers such as polycaprolactone (PCL), poly(butylenes succinate) (PBS), poly(butylene adipate terephthalate) (PBAT) [236237], and natural rubber [238239]. SM was plasticized and destructurized successfully using glycerol and urea in a twin screw extruder and then blended with biodegradable polyesters, PCL and PBS [236]. As a result of destructurization phenomenon, improvement occurred in mechanical properties of the protein-based blends. In another work, SM was plasticized using glycerol in presence of two different denaturants (destructurizers), and the resulted thermoplastic SM was blended with different polyesters, PBS, PCL and PBAT [237]. Taguchi experimental design was adopted to investigate the effect of each constituent on the tensile properties of the final blend. Wu et al. [238] produced vulcanized blend of natural rubber and 50 wt% SM. The rubber phase was embedded by the SM matrix suggesting the interaction between phases, also approved by the increase in the glass transition temperature of the rubber phase. The produced blend exhibited good elasticity and water resistance.

Another area of research conducted on SM is producing edible films from defatted SM for food packaging applications [240241]. For this purpose, SM was fermented in a soybean meal solution (15 g/100 ml of water) by inoculation with Bacillus subtilis bacteria fermentated under optimum conditions of 33°C and pH 7.0-7.5 for 33 h. Then, the fermented soybean solution was heated for 20 min at 75°C with 2-3 ml glycerol added to the solution to overcome film brittleness. The filtered solution was finally casted in a petri dish to produce films. Increasing amount of plasticizer in the fermented film led to a decrease in tensile strength and an increase in % elongation of the film compared to the ordinary soybean film. Moreover, the SM-based film exhibited higher water vapor permeability. On the other hand, experiments showed that growth inhibition of the produced SM-based film in the agar media containing E. coli was much higher than the ordinary soy protein film. These results indicated that the fermented SM-based films can be used as a new packaging material to extend the shelf-life of foods; however mechanical and physical properties need to be improved for more industrial applications.