Corn gluten meal

Corn gluten meal (CGM) is much cheaper than zein protein, thus creating more attraction compared to zein in producing thermoplastic materials. In this context, several plasticizers have been tried by many researchers for plasticization of CGM. Lawton and coworkers [227] studied the effect plasticizers such as glycerol, triethylene glycol (TEG), dibutyl tartrate, and octanoic acid on melt processing and tensile properties of CGM. In another work, di Gioia et al. [228] plasticized CGM with different plasticizers including water, glycerol, polyethylene glycols (PEG), glucose, urea, diethanolamine, and triethanolamine, at concentrations of 10­30% (dwb). They implemented dynamic mechanical thermal analysis (DMTA) to investigate the change in glass transition temperature and rheological moduli of CGM. Similarly, the effect of "polar" plasticizers (such as water, glycerol) or "amphiphilic" plasticizers (such as octanoic and palmitic acids, dibutyl tartrate and phthalate, and diacetyl tartaric acid ester of mono­diglycerides) on the glass transition temperature of the CGM/plasticizer blends have been reported [229].

Plasticized CGM has been blended with several polymers. Corradini et al. [230] blended CGM with different plastics such as starch, polyvinyl alcohol (PVA) and poly(hydroxybutyrate-co — hydroxyvalerate), PHBV, using glycerol as plasticizer. After studying the glass transition temperature of the blends, they found that these blends are immiscible in the studied compo­sitional range. Also in terms of mechanical properties, PVA improved the flexibility while PHBV enhanced the rigidity and starch caused slight changes in mechanical properties. CGM has also been blended with poly(e-caprolactone), PCL [231]. In this work, CGM was first plasticized using glycerol/ethanol mixture, denatured by the addition of guanidine hydro­chloride (GHCl), and then blended with PCL. They used twin screw extruder and injection molding for the processing. Their results showed that chemical modification of plasticized CGM with GHCl resulted in a high percent elongation. In another work CGM was blended with poly(lactic acid), PLA, plasticized with glycerol, water and ethanol using a single screw extruder followed by compression molding [212]. Their results showed that PLA enhanced the rigidity and improved the water resistance. CGM-wood fiber biocomposites have been the point of interest in several publications. CGM in these works has been used in the form of plasticized meal. Wu et al. [232] produced pellets of CGM-wood fiber, plasticized by glycerol, water and ethanol, to manufacture injection-molded plant pots for developing low cost, biodegradable containers used in agriculture. In another study, CGM plasticized with propylene glycol was blended with a biopolymer, poly(butylene succinate) (PBS), and wood fiber to produce a biodegradable material for plastic packaging applications [233]. The CGM content varied between 10-80 wt% and it was found that the produced biomaterial exhibited relatively high tensile strength, elongation at break and water resistance as long as the CGM content was less than 30 wt%. Similarly, CGM has been plasticized with different plasticizers such as glycerol, octanoic acid, polyethylene glycol and water, and reinforced with wood fiber using a twin screw extruder [234]. The best mechanical performance was achieved when a combination of 10 wt% octanoic acid and 30 wt% water was used as plasticizer with 20 wt% wood fibre as reinforcement. The mechanical properties were improved more when the CGM matrix was blended with polypropylene, coupling agent (maleated polypropylene) and cross­linking agent (benzoyl peroxide) with 50 wt% wood fibre [234].