Polymeric blends and composites from lignin

3.2.1.1. Lignin in thermoplastics

In polymers, lignins have been used as low-cost fillers aiming to retain their mechanical properties. Nitz et al. [164] reported the influence of various types of lignin reinforcement with the thermoplastics on their mechanical properties. Their results indicate that they are able to incorporate ~40 wt% lignin in to polyamide 11 (PA11), polyester (Ecoflex®) and polyestera — mide (BAK®) systems without impairing their mechanical properties [164]. Generally lignin shows high cross-linking/intramolecular interactions, which limits their application in solid material systems. This can be overcome through polymer blending; however, achieving miscibility is very essential to develop a material system with superior properties [165]. This is possible in lignin-based blends by manipulating the chemistry of hydrogen bonding between the OH groups and interacting sites of polymers, either polar or semi polar [165]. Moreover, the hydrogen bond with a polymer varies with lignin to lignin since the monomer combinations of the lignins are unique [166].

Lignin-thermoplastic blends can be classified into two categories and they are (i) lignin — petro — based polymer blends and (ii) lignin-renewable resources based polymer blends. Blending the lignin with polyethylene and polypropylene is well known [166169]. Alexy et al. [166] reported the effect of lignin concentration in the fabrication of polymeric blend with PP and PE. They measured the tensile strength as the measure of mechanical properties over the various lignin compositions. For both the polymer systems they identified that the mechanical properties decrease with increasing lignin content [166]. In addition to mechanical properties, Canetti et al. [169] and Mikulasova et al. [170] reported the fabrication of lignin/PP blends and investigated their thermal and biodegradable properties respectively. Poly(vinyl chloride) (PVC) is the next popular thermoplastic, which has been produced globally and exhibits a wide range of applications [171]. Raghi and coworkers [171] reported the fabrication of lignin/PVC blend and studied their mechanical/weathering properties. Their research investigation confirmed that the addition of lignin to PVC enhanced their tensile strength and not influenced their weathering behavior. Banu et al. [172] reported the fabrication of PVC/lignin blends and investigated the effect of plasticizer in their formulations. They concluded that the specific thermal and mechanical properties are feasible in some formulations with the addition of plasticizer. In addition to that, lignin/ poly(vinyl alcohol) (PVA) and lignin/ poly(ethylene oxide) (PEO) blend systems with various types of lignins are also investigated for the effective electrospinning performance [173176]. Sahoo et al., [92] reported the fabrication of polybuty­lene succinate (PBS) reinforced with renewable resource-based lignin employing a melt extrusion process. They found that lignin reinforcement in PBS enhances their properties synergistically and also achieved the incorporation of high fraction of lignin of about 65%. In addition to that, they also reported the fabrication of PBS-based composite materials with the hybrid reinforcement of lignin and other natural fibre [93]. They found that the hybrid reinforcement is more beneficial over individual reinforcement for the better flexural strength.

The research on lignin-based polymer blends with renewable resource-based biopolymer is very limited. Only few publications are available in this content. Camargo et al. [177] reported the melt processing of poly(3-hydroxybutyrate-co-hydroxyvalerate) (PHBV) with lignin, in which they used the lignin isolated from sugarcane bagasse. They found that the addition of lignin to PHBV caused a reduction in their mechanical properties, which is due to the zero integration of lignin and PHBV [177]. Mousavioun et al. [178] performed the processing of poly(hydroxybutyrate) (PHB)-soda lignin blend and studied its thermal behavior. They found that the addition of soda lignin formed the miscible blend and improved their overall thermal stability. However, they have not reported their mechanical properties [178]. Vengal et al. [179] investigated the blending effect of lignin with starch and gelatin for the fabrication of biode­gradable polymeric films. They found that the addition of lignin into starch can create better film with the composition of 90:10 (lignin: starch) and further increment of lignin content decreases their properties. Casetta et al. [180] fabricated the PLA and lignin blend and investigated their flame retardant behavior. They observed that the addition of lignin to PLA enhanced their flame retardant property comported to virgin PLA.