Bagasse-thermoset biocomposites

Phenolic resins are the major thermosets used for bagasse particleboards and several studies have been published on using resol [137], Novolac [149], lignophenolic [150] and other phenolic resins [143, 151] with bagasse fiber. Zarate et al. [137] studied the effect of fiber volume fraction on the density and flexural properties of composites from resol and several fibers including bagasse. They compared the efficiency criterion for mechanical performance, which relates the strength and stiffness with density, of the composites with those of typical structural materials including aluminum, magnesium, polyethylene and steel. Based on this comparison, it was concluded that the stiff composite materials produced from bagasse fibers and resol matrix are better compared to typical structural materials such as steel [137]. The effect of maleic anhydride (MA) treatment of bagasse fiber on properties of its composite with Novolac has been studied [149]. It has been reported that the composites with MA treated fibers had a hardness of 2-3 times more than that of the untreated bagasse composite and MA treatment reduced water and steam absorption of the fibers. Paiva and Frollini [150] extracted lignin from sugarcane bagasse by the organosolv process and used it as a partial substitute of phenol in resole phenolic matrices to produce bagasse-lignophenolic composite by compression molding. They observed improvement in the impact strength when sugarcane bagasse was used, but no improvement was found as a result of fiber treatments such as mercerization and esterification.

Unsaturated polyesters are another family of thermoset resins used for bagasse-based composite purposes. The effect of fiber size, its surface quality and the compression molding parameters on the flexural properties of composites from polyester and chopped bagasse fiber has been investigated. It was found that composites produced with bagasse particle size of less than 2 mm, and pre-treated for the extraction of sugar and alcohol exhibited the highest mechanical performance [138]. The effect of chemical treatments using sodium hydroxide and acrylic acid on the properties of bagasse-polyester composites has been studied. The treatments resulted in the better interaction between fiber and matrix as well as lower water absorption than composites with untreated fiber [142].