Coproducts of Biofuel Industries in Value-Added Biomaterials Uses: A Move Towards a Sustainable Bioeconomy

S. Vivekanandhan, N. Zarrinbakhsh, M. Misra and A. K. Mohanty

Additional information is available at the end of the chapter http://dx. doi. org/10.5772/55382

1. Introduction

World population is expected to grow nearly 9 billion in 2040 and eventually increases the global energy demand by 30% compared to current conception [1]. The issues related to increasing trend of crude oil cost, depleting source of fossil fuels and emerging threat on greenhouse gas emissions are leading the global energy sector to undergo a fundamental transformation towards renewable energy sources [12]. As the result, a main focus is motivated on renewable energy technologies that are based on solar, wind and biofuels. In transportation point of view, biofuels receive extensive attention due to their versatility in storage and refilling. Both bioethanol and biodiesel come together as biofuel currently produced from renewable resources through two different pathways. In some countries like Brazil, biofuels are produced and marketed at competitive cost compared to petroleum-based fuels employing existing technology [34]. They also carry following advantages comparing to petro fuels; (i) create significantly less pollu­tants (SOx and NOx), which also mitigates CO2 emission, (ii) biodegradable nature lead to the less environmental leak risk and (iii) provides better lubricant effect, which enhances the engine life [5]. In addition, these emerging biofuel technologies will be expected to create more economic benefits to agriculture sectors and new rural job opportunities. Moreover, biofuels are attrac­tive options for future energy demand since they can be produced domestically by many countries while the respective retail and consumer infrastructure needs minimum modifica­tion; so does the existing engine and fueling technology [6].

However, biofuel foresees a challenging journey to benefit from its highest potentials and to guarantee a viable future. Primarily, it needs policy support and commercialization. At the

same time, research and development is crucial to conquer the challenges and bring sustain­ability to biorefinery facilities [7]. Major motivation for biofuels usage arises from the execution of biofuel policies by many countries, which mandates the incorporation of bio-counterpart into traditional fuels. United Kingdom introduced the Renewable Transport Fuels Obligation (RTFO) and encouraged the oil suppliers to incorporate biofuel into transport fuel between 2.5 and 5% during 2008-2010. RTFO’s ultimate aim is to increase this 5% upto 10% by 2020, which will reflect in the demand of minimum 5 million tonnes [8]. Renewable fuel blending mandates in Canada was implemented through Canadian Environmental Protection Act, which recom­mends 5% ethanol with gasoline (in 2010) and 2% biodiesel with diesel (in 2012) [9]. In South Africa, the National Biofuels Industrial Strategy was introduced by the government in 2007, which recommends the implementation of 2% biofuels into liquid road transport fuels by 2013 [10]. Currently India’s ~80% crude oil demand is satisfied by foreign suppliers, which is projected to rise 90% in 2025. In order to reduce this foreign dependency, India has announced the target of ethanol blending with gasoline 20% by 2017 [11]. In biofuel production, China has clear production goals to meet emerging demand in near future. China’s integrated biofuel polices (rural welfare, improved energy security, reduced fossil fuel dependence, and CO2 emissions) aimed to meet ~ 15% of the total transportation fuel demand by 2020 [12]. In Malaysia, the National Biofuel Policy initially planned to proceed with 5% biodiesel blend with 95% petroleum diesel, which is similar to Europe’s B5, which has been started from 2009. This will be implemented through short, medium and long term strategies aiming to reduce their petroleum imports [13]. In addition to that, many countries have already designed various incentive programs for the effective promotion of biofuel production including bioethanol and biodiesel. This implements 5-20% biofuel supplement into traditional fuels [14].

Such blending mandates of biofuels adopted by the E. U. and U. S. created a dispute of increased food prices. Besides, the contribution of corn bioethanol in addressing the global warming issues is very modest while having a small positive net energy balance; i. e. the energy return on investment (EROI) of corn bioethanol is low (=1.2-1.6) compared to oil (=9) [6]. The emerging challenges for 1st generation of biofuel industries that utilizes corn and soybean as a major feed stock for biofuel production motivated the search for non-food and more efficient energy feedstocks like jatropha, lignocellulosic biomass and algae. Among them, cellulosic matter will be the major feedstock for second generation biofuel, since it exhibits much higher yield per hectare in comparison with sugar or starch crops [6]. As a result, cellulosic biomass can potentially yield higher land fuel (135 GJ/ha) than corn kernel (85 GJ/ha) and soy (18 GJ/ha) [15]. Moreover, significantly higher carbon sequestration is another advantage of the use of cellulosic biomass in biofuel production compared to the first generation biofuel crops [6].

This biomass-biofuel conversion can be performed under three major classes and they are (i) conversion of renewable polysaccharides into sugar molecules and their effective fermentation into ethanol, (ii) syngas production and their bio/chemical conversion into alcohols and (iii) production of bio-oil though fast-pyrolysis and their upgrade into transportation fuels. Considering the lignocellulosic feedstock as the biofuel precursor, it is crucial to create the necessary infrastructure in many levels from biomass to biofuel production; agriculture — technology-policy. The new utilization of biomass would largely affect the agriculture sector and necessitates effective actions to ease the adaptation process. Biofuel production uses land which keeps it from food production and environmental preservation. Other issues might be

considered; soil erosion may worsen by expanding the biomass production, reduction of environmental land affects biodiversity and more pesticides and fertilizers may be used. Thus, the sustainability of biofuel is not achieved solely by a positive net energy balance [6]. In spite of all raised issues, it is important to bear in mind that biofuel still offers its advantages even if it has a small contribution compared to fossil fuels. In this regard, the two main challenges in biomass production can be (a) developing crops with suitable physical and chemical traits for biofuel production and (b) increasing biomass yields (double or more) [7]. How to put these two different strands into an integrated production strategy is important and brings new research topics into the whole agriculture picture. The outcome of such productivity-enhanc­ing innovations, research and development motivated by biofuel can be such that by 2050, the whole world population could be supplied enough diet while less cropland is used than today [6]. The respective biorefinery operation also needs improvements so that sugars can be produced from cellulosic biomass and fermented economically feasible and able to compete with production from corn and sugar. These include improvement in lignocellulosic pretreat­ment, reduction in enzyme (cellulase) cost, both cellulase production and ethanol fermentation by using modified microorganisms [7].

In general, the growth of biofuel industry consists of (i) increased production capacity and (ii) successful transformation of industrial technology from discrete batch method (small-scale) into continuous flow method (larger-scale) [16]. In most of the small scale manufacturing, the industries do not have the practice of collecting coproducts, thus they run with increased operating costs. Hence, larger-scale industries are keen in capturing their coproducts in order to reuse them in the production process, which results in the reduction of operating cost significantly. Thus, value-added processing may serve as a viable alternative that not only reduces the impact on the environment, but also generates additional revenue source for biofuel plants [17]. Sustainable bioeconomy road map that integrates renewable resources, biofuel production/ utilization and the value-addition to the respective coproducts is shown schematically in Figure 1. In recent years, biofuel coproducts have been utilised for the fabrication of various chemicals for diversified applications and used as the filler/reinforce — ment for polymer blends as well as composites. The emerging opportunities for the biofuel coproducts in biomaterials (polymers/ composites) applications make successive transforma­tion of coproducts to renewable feedstock with economic benefits. Capitalizing this transfor­mation enhances the economic viability and also the sustainability of biofuel industries. Thus, this chapter summarizes the various aspects in biomaterial applications of the biofuel copro­ducts and their role in sustainable bioeconomy.