Thermo-chemical conversion

Thermo-chemical conversion is one of the important routes to obtain fuels from lignocellulo — sic biomass. Thermo-chemical conversion of biomass involves heating the biomass materials in the absence of oxygen to produce a mixture of gas, liquid and solid. Such products can be used as fuels after further conversion or upgrading. Generally, thermo-chemical processes have lower reaction time required (a few seconds or minutes) and the superior ability to de­stroy most of the organic compounds. These mainly include biomass pyrolysis and biomass gasification. Recently, thermo-chemical pretreatment of biomass, such as torrefaction was introduced to upgrade biomass for more efficient biofuel production [1617].

1.1. OPEFB pyrolysis

Pyrolysis is defined as the thermal degradation of the biomass materials in the absence of oxygen. It is normally conducted at moderate temperature (400 — 600°C) over a short period of retention time. Its products comprise of liquids (water, oil/tars), solids (charcoal) and gas­es (methane, hydrogen, carbon monoxide and carbon dioxide). The efficiency of pyrolysis and the amount of solid, liquid, and gaseous fractions formed largely depend on the process parameters such as pretreatment condition, temperature, retention time and type of reactors.

Misson et al investigated the effects of alkaline pretreatment using NaOH, Ca(OH)2 in con­junction with H2O2 on the catalytic pyrolysis of OPEFB [11]. They proved that consecutive addition of NaOH and H2O2 decomposed almost 100% of OPEFB lignin compared to 44% for the Ca(OH)2 and H2O2 system, while the exclusive use of NaOH and Ca(OH)2 could not alter lignin composition much. In addition, the pretreated OPEFB was catalytically pyro — lysed more efficiently than the untreated OPEFB samples under the same conditions.

Fast pyrolysis represents a potential route to upgrade the OPEFB waste to value-added fuels and renewable chemicals. For woody feedstock, temperatures around 400-600°C together with short vapour residence times (0.5-2 s) are used to obtain bio-oil yields of around 70%, along with char and gas yields of around 15% each. Sulaiman and Abdullah investigated fast pyrolysis of OPEFB using and bench top fluidized bed reactor with a nominal capacity of 150 g/L [18]. After extensive feeding trials, it was found that only particles between 250 and 355 " m were easily fed. The maximum liquid and organics yields (55% total liquids) were obtained at 450°C. Higher temperature was more favourable for gas production and water content was almost constant in the range of temperature investigated. The maximum liquids yield and the minimum char yield were obtained at a residence time of 1.03 s. The pyrolysis liquids produced separated into two phases; a phase predominated by tarry or­ganic compounds (60%) and an aqueous phase (40%). The phase separated liquid product would represent a challenging fuel for boilers and engines, due to the high viscosity of the organics phase and the high water content of the aqueous phase. These could be overcome by upgrading. However, the by-product, charcoal, has been commercialized for quite some time. It is worth noting that the first pilot bio-oil plant by Genting Bio-oil has already started operation in Malaysia [19].