Pretreatment

Similar to all other lignocellulosic biomass, OPEFB are composed of cellulose, hemicellulose and lignin. Among the three components, lignin has the most complex structure, making it recalcitrant to both chemical and biological conversion. Pretreatment of OPEFB is therefore necessary to open its structure and increase its digestibility and subsequently the degree of conversion. Pretreatment of OPEFB can be classified as biological pretreatment, physical pretreatment, chemical pretreatment, and physical-chemical pretreatment.

For biological pretreatment, oxidizing enzymes and white-rot fungi were used to degrade the lignin content in OPEFB. For example, enzymes such as lignin peroxidase (LiP) and manganese peroxidase (MnP) was used to pretreat OPEFB for fast pyrolysis and the bio-oil yield was improved from 20% to 30% [6]. Syafwina et al. used white-rot fungi to pretreat OPEFB and the saccharification efficiency was improved by 150% compared to that of the untreated OPEFB [7].

Among all the pretreatment methods, chemical pretreatment is most often reported for OPEFB. Two-stage dilute acid hydrolysis [8], alkali pretreatment [9], sequential dilute acid and alkali pretreatment [10], alkali and hydrogen peroxide pretreatment [11], sequential al­kali and phosphoric acid pretreatment [10], aqueous ammonia [12], and solvent digestion [5] were used to increase the digestibility of OPEFB. Among all the chemical methods investi­gated, alkali pretreatment seemed to be the most effective. Umikalsom et al. autoclaved the milled OPEFB in the presence of 2% NaOH and 85% hydrolysis yield was obtained [13]. Han and his colleagues investigated NaOH pretreatment of OPEFB for bioethanol produc­tion [9]. The optimal conditions were found to be 127.64°C, 22.08 min, and 2.89 mol/L NaOH. With a cellulase loading of 50 FPU /g cellulose a total glucose conversion rate (TGCR) of 86.37% was obtained using the Changhae Ethanol Multi Explosion (CHEMEX) fa­cility. The effectiveness of alkali pretreatment might be attributed to its capability in lignin degradation. Mission et al. investigated the alkali treatment followed H2O2 treatment and found that almost 100% lignin degradation was obtained when OPEFB was firstly treated with dilute NaOH and subsequently with H2O2 [11]. This confirmed the lignin degradation by NaOH and its enhancement by the addition of H2O2.

Besides alkali pretreatment, physical-chemical pretreatment such as ammonium fibre explo­sion (AFEX) [14] and superheated steam [15] were also shown to be effective in the increase of OPEFB digestibility. Hydrolysis efficiency of 90% and 66% were obtained, respectively.