Biofuel blending

It is important that when you are purchasing fuel you make sure it is high quality by meet­ing all ASTM specifications. Fuel that is off specification on just one of the ASTM standards can not only cause serious engine problems, but it can void engine warranties if it is deter­mined that the fuel caused damage. This can cause unnecessary costly repairs for vehicles/ equipment. To review specifications for diesel fuel, biodiesel and biodiesel blends, see the specifications in the Appendix. In an effort ensure that producers and marketers operate in a manner consistent with proper specifications, the National Biodiesel Accreditation Commis­sion created the BQ-9000 program in 2005. This voluntary program establishes quality sys­tems for producers and marketers of biodiesel in the areas of storage, sampling, testing, blending, shipping, distribution and fuel management practices. If purchasing B100 or a bio­diesel blend, ask if the biodiesel is from a BQ-9000 biodiesel producer/marketer. If you are unable to get fuel from a BQ-9000 producer/marketer, the next best thing is to verify with your supplier that the fuel meets all ASTM specifications.

In most cases the blending process takes place right at the terminal rack by a process called in-line blending. This is the preferred method because it ensures complete blending. In-line blending occurs when warm biodiesel is added to a stream of diesel fuel as it travels through a pipe or hose in such a way that the biodiesel and diesel fuel become thoroughly mixed by the turbulent movement. This product is sold directly to customers, petroleum jobbers or a distribution company for sale to customers.

The blend level (percentage of biodiesel in the biodieseldiesel mixture) determines many im­portant characteristics of the blended fuel. A higher-than-specified level of biodiesel may ex­ceed the engine manufacturer’s recommended limitation, compromising the engine performance. A lower blend level of biodiesel may reduce the expected benefits, such asfuel lubricity and tail pipe emission. In addition, cloud point and pour point of biodiesel are usu­ally higher than that of diesel fuel, and a higher blend level makes the fuel unsuitable or dif­ficult to use in cold weather conditions. Engine injection timing can be adjusted based on the blend level in order to improve the engine emission and performance (Tat and Van Gerpen, 2003).

It has been reported that the actual biodiesel content of blended biodiesel fuel sold at gas stations can be significantly different from the nominal blend level. A 2% nominal blend has been found to actually contain anywhere from 0% to 8% biodiesel (Ritz and Croudace, 2005). There are several reasons why the actual blend level may differ from the specified level. For instance, if biodiesel is blended at a temperature less than 10°F above its cloud point, it will not mix well with diesel, causing a rich mixture in one portion of the tank and a lean mix­ture in another portion (NBB, 2005). Other reasons for the discrepancy may include profit — driven fraud and involuntary mixing of diesel into the blend to lower the overall blend level of biodiesel. Biodiesel is usually sold at a higher price than diesel fuel; therefore, the price of the fuel is dependent on the blend level. Knothe (2001) has shown that near-infrared (NIR) spectroscopy and nuclear magnetic resonance (NMR) can be used to detect biodiesel blend levels. However, the NMR method depends on the biodiesel fatty acid profile; hence, knowledge of the biodiesel feedstock is required before this method can be used. In addi­tion, using NMR only to detect blend level may not be cost effective. For NIR spectroscopy, Knothe suggested using wavelengths around 1665 nm or 2083 to 2174_nm. Since aromatic compounds produce strong and sharp infrared bands due to their relatively rigid molecular structure and diesel fuels have varying amounts of aromatics between 20% and 35% (Song et al., 2000), the absorbance of a blend may not directly correlate to the percentage of biodie­sel. The absorbance is defined as the logarithm of the radiation intensities ratio, that is, be­fore and after being absorbed by a sample.

Diesel fuel is distilled from crude petroleum, which is composed primarily of hydrocarbons of the paraffinic, naphthenic, and aromatic classes. Each class contains a very broad range of molecular weights. One of the features of diesel fuel is the presence of 20% to 35% aromatic compounds by weight. Aromatics are a class of hydrocarbons that are characterized by a stable chemical ring structure. They are determined primarily by the composition of the crude oil feed, which is usually selected based on considerations of availability and cost (Chevron, 2006). On the other hand, biodiesel is a mixture of fatty acid esters. Fatty acids with 16 to 22 carbon chain lengths are predominant in oils and fats. The resulting mixture of fatty acid esters depends on the kind of feedstock used. Neat biodiesel contains essentially no aromatic compounds.

The presence of aromatics in diesel and their absence in biodiesel creates the possibility of distinguishing these two fuels using ultraviolet spectroscopy. Benzene, the simplest aromat­ic compound, has maximum absorption at 278 nm (Zawadzki et al., 2007). Biodiesel, which is esters of long-chain fatty acids when adequately diluted in и-heptane, has negligible ab­sorbance compared to the aromatics at the same frequency. Hence, differences in biodiesel feedstocks will have a minimal impact on absorbance at this wavelength. The ultraviolet (UV) range between 200 and 380 nm is also referred to as near-UV. In general, light sources, filters, and detectors are less expensive for this vicinity of the spectrum than for IR at 8621 nm, as used by the CETANE 2000. Hence, near-UV spectroscopy may present a low-cost al­ternative method for biodiesel blend level sensing (Figure 12 and 13).