Hydrotreating catalytic processes in bio-oil upgrading

As it has been stated in the introduction, a general characteristic of bio-oils coming from the pyrolysis of biomass is their high oxygen content (35-40 wt%). More than 300 compounds have been identified in bio-oil, most of them containing oxygen atoms. The exact composi­tion of the bio-oil depends on the type of biomass fed. These compounds can be classified in five broad categories: (i) hydroxyaldehydes, (ii) hydroxyketones, (iii) sugars and dehydrosu­gars, (iv) carboxylic acids, and (v) phenolic compounds [16]. Hydroprocessing of biomass — derived oils differs from processing petroleum because of the importance of deoxygenation as compared to nitrogen or sulfur removal. Bio-oil hydrodeoxygenation (HDO) process im­plies complex reaction networks that includes cracking, decarbonylation, decarboxylation, hydrocracking, hydrogenolysis, hydrogenation and polymerization. The upgrading process should yield a product with lower amount of water and oxygen, decreased acidity and vis­cosity, and higher HV. The complexity of the reactions and the high variety of oxygenated compounds make the evaluation of bio-oil upgrading difficult and has brought the use of model compounds such as phenol, guaicol, 2-ethylphenol, methyl heptanoate or benzofuran to test different catalysts and to understand the main characteristics of the HDO process. El­liot [17] has reported the HDO reactivity of different organic compounds that are typically present in bio-oils (see Figure 3). Olefins, aldehydes and ketones can easily be reduced by H2 at temperatures as low as 150-200 °C. Alcohols react at 250-300 °C by hydrogenation and thermal dehydration to form olefins. Carboxylic and phenolic ethers react at around 300 °C. Regarding the operating pressures, due to the low solubility of hydrogen in organic and aqueous solutions, high pressures are required to guarantee high availability of hydrogen in the vicinity of the catalyst (80-300 bar of H2 pressure) [15].

image109

Figure 3. Reactivity scale of organic components under HDO conditions. Adapted from [17].