Perspectives of butanol as biofuel

Biobutanol has excellent fuel properties compared to ethanol, thus it can be used directly as fuel or blending component for both diesel and gasoline powered internal combustion engines [217221]. Butanol has no corrosive properties and its miscibility with gasoline and water tolerance is higher than the appropriate properties of ethanol or methanol [222]. Butanol can also be used as hydrogen source for fuel cells [223] and proved to be useful as esterification alcohol in fatty acid ester type biodiesel production [229233] or as raw material in the production of dibutyl ether [236] butoxylated butyl diesels [237] or can be converted into aromatic hydrocarbons on zeolite catalysts [238241].

6.1. Butanol as fuel and blending component in fuel mixtures

Although ethanol as a gasoline extender has received a great deal of attention, this fluid has numerous problems, such as aggressive behaviour toward engine components and a relatively low energy content, the properties of butanol or butanol containing gasoline, diesel and biodiesel fuel compositions are more advantageous than the analogous properties of ethanol or ethanol containing fuels [222]. The performances of gasoline and diesel engines powered with gasoline contained 0-20% BuOH and diesel fuel contained 0-50% BuOH were evaluated. Tests showed that BuOH can be used as a gasoline or diesel fuel supplement in amounts of <20% and <40%, respectively, without significantly affecting unmodified engine performance. BuOH slightly decreased the octane rating of a blend of 20% BuOH in gasoline but in diesel fuel <40% BuOH had no detectable effect on the ignition of the fuel blend [217]. Diesel engines can be powered with 25-75% of a Bu-alcohol and 25-75% of vegetable oil mixtures which were normally liquids under operating conditions. A fuel mixture composed of 50% corn oil and 50% n-BuOH was used as the fuel for 2 tractors when the engine performance in both tractors and the behaviour of the fuel was entirely satisfactory, the engine running smoothly and evenly without significant smoke or odor, with quick acceleration and smooth idling. The above blend could be mixed in any proportion to no. 2 diesel oil without significant change in engine performance [218]. A diesel precombustion chamber engine powered with 70% BuOH-30% diesel fuel had, at an av. 5.9-bar pressure, an ignition delay of operation which was only 10% more than that when operated with diesel alone. The maximum pressure increase during the operation remained higher in both combustion chambers in operation with 70 vol.% BuOH than in operation with diesel alone. There is high potential of improvement of the exhaust gas quality with BuOH-diesel fuel mixtures, especially with regard to smoke value, particulate emissions, and nitrogen oxides. The engine performance under such conditions is similar to that with diesel fuel alone. The starting problem of the engine powered with diesel-BuOH mixture is avoided by using an electrically heated spark plug which maintains ~1000 °C in the precombustion chamber. More than 200 h of satisfactory operation was attained in a BuOH — diesel mixture powered engine [219]. Substitute diesel fuel compositions consist of gas oil (b. 167-359 °C) 20-55, a 75:25 (wt.) mixture BuOH-Me2CO 30-40, fatty acid esters 15-40 wt.%. Thus, substitute diesel fuel composition containing gas oil 20, BuOH-Me2CO mixture 40, and gas oil and BuOH-Me2CO mixture 40 wt.% had cetane no. 40.6 and resulted in normal tractor operation for 50 h [220].

Coupled biodiesel and ABE production technology proceeds by extraction of the ABE contain­ing broth with biodiesel oils forms a mixture which can directly be applied as fuel for diesel en­gines [224]. Using soybean-derived biodiesel as the extractant with an aqueous phase volume ratio of 1:1, butanol recovery ranged from 45 to 51% at initial butanol concentration of 150 and 225 mM, respectively. Using biodiesel-derived glycerol as feedstock for butanol production, the production of a biodiesel/butanol fuel blend could be a fully integrated process within a biodie­sel facility [225]. The presence of surfactants had important influence on the amount of extract­ed butanol with biodiesel oil prepared from waste cooking oil [226]. This extraction was integrated into the fermentation process, when large quantity of gas (H2 and CO2), was released and the produced butanol and acetone were brought into extractant phase. Surfactants de­creased the tension of gas-liquid interface and made the large bubble break down, therefore, the releasing gas passed through the extractant phase in form of small bubbles. The mass transfer rate of products from the aqueous phase to the extractant phase was enhanced and the balance time was shortened accordingly by addition of surfactants, consequently, the fermentation pro­ductivity was improved. Using waste cooking oil derived biodiesel as extractant the butanol concentration in the extractant phase was increased by 21.2% as compared to the control, while the concentration of surfactant (Tween-80) in culture medium was 0.140% (w/v). Under these conditions, gross solvent productivity was increased by 16.5% [226]. When the biodiesel de­rived from crude palm oil was used as extractant, the fuel properties of the biodiesel-ABE mix­ture were comparable to that of No.2 diesel, but its cetane no. and the boiling point of the 90% fraction were higher [227]. Biodiesels prepared from some waste oils proved to be somewhat toxic toward C. Acetobutylicum. Under this condition, the butanol concentration in the biodie­sel phase also reached a level of 6.44 g L-1 [228].