Gas Fermentation for Commercial Biofuels Production

Fung Min Liew, Michael Kopke and Sean Dennis Simpson

Additional information is available at the end of the chapter http://dx. doi. org/10.5772/52164

1. Introduction

With diminishing global reserves of crude oil and increasing demand, especially from developing countries, the pressure on oil supply will grow. Although the 2007-2010 fi­nancial crisis brought down the price of crude oil (per barrel) from a record peak of US $145 in July 2008, factors such as recovering global economies and political instability in the Middle East have restored the price of crude oil to the US$100 mark. At current rate of consumption, the global reserves of petroleum are predicted to be exhausted within 50 years [1, 2]. This, coupled with the deleterious environmental impacts that result from accumulating atmospheric CO2 from the burning of fossil fuels, the development of af­fordable, and environmentally sustainable fuels is urgently required. Many countries have responded to this challenge by legislating mandates and introducing policies to stimulate research and development (R&D) and commercialization of technologies that allow the production of low cost, low fossil carbon emitting fuels. For instance, the Euro­pean Union (EU) has mandated member countries to a target of deriving 10% of all transportation fuel from renewable sources by 2020 [3]. Between 2005 and 2010, renewa­ble energies such as solar, wind, and biofuels have been increasing at an average annual rate of 15-50% [4]. Renewable energy accounted for an estimated 16% of global final en­ergy consumption in 2009 [4].

Biofuels have been defined as solid (bio-char), liquid (bioethanol, biobutanol, and biodie­sel) and gaseous (biogas, biosyngas, and biohydrogen) fuels that are mainly derived from biomass [5]. Liquid biofuels provided a small but growing contribution towards worldwide fuel usage, accounting for 2.7% of global road transport fuels in 2010 [4]. The world’s largest producer of biofuels is the United States (US), followed by Brazil and the EU [4]. In 2009, US and Brazil accounted for approximately 85% of global bioethanol

production while Europe generated about 85% of the world’s biodiesel [6]. The global market for liquid biofuels (bioethanol and biodiesel) increased dramatically in recent years, reaching US$83 billion in 2011 and is projected to US$139 billion by 2021 [7].

The use and production of biofuels has a long history, starting with the inventors Niko­laus August Otto and Rudolph Diesel, who already envisioned the use of biofuels such as ethanol and natural oils when developing the first Otto cycle combustion and diesel engines [6]. While fermentative production of ethanol has been used for thousands of years, mainly for brewing beer starting in Mesopotamia 5000 B. C., fermentative produc­tion of another potential biofuel butanol, has only been discovered over the last century, but had significant impact. During the World War 1, Chaim Weizmann successfully ap­plied a process called ABE (acetone-butanol-ethanol) fermentation using Clostridium aceto — butylicum to generate industrial scale acetone (for cordites, the propellant of cartridges and shells) from starchy materials [6, 8]. His contribution was later recognised in the Balfour declaration in 1917 and he became the first President of the newly founded State of Israel [6, 8]. Intriguingly, the enormous potential of butanol produced at that time was not realized and the substance was simply stored in huge containers [6]. ABE fer­mentation became the second biggest ever biotechnological process (after the ethanol fer­mentation process) ever performed, but the low demand of acetone following the conclusion of the war led to closure of all the plants [8]. Although ABE fermentation briefly made a comeback during the Second World War, increasing substrate costs and increasing stable supply of low cost crude oil from the Middle East rendered the tech­nology economically unviable. Recently, a resurgence of the technology is underway as some old plants are reopened and new plants are being built or planned in China, the US, the United Kingdom (UK), Brazil, France and Austria [6, 8].

Traditionally sugar substrates derived from food crops such as sugar cane, corn (maize) and sugar beet have been the preferred feedstocks for the production of biofuels. How­ever, world raw sugar prices have witnessed significant volatility over the last decade or so, ranging from US$216/ton in year 2000 to a 30 year high of US$795/ton in February 2011 due to global sugar deficits and crop shortfall [9]. This has created uncertainty and raised sustainability issues about its use as a feedstock for large scale biofuel production. This review aims to shed light on the use of syngas and industrial waste gas as feed­stocks, and the emerging field of gas fermentation to generate not only biofuels, but also other high-value added products. The advantages of gas fermentation over conventional sugar-based fermentation and thermochemical conversions, and their flexibility in utiliz­ing a spectrum of feedstocks to generate syngas will be discussed. The biochemistry, ge­netic and energetic background of the microorganisms that perform this bioconversion process will be critically examined, together with recent advances in systems biology and synthetic biology that offer growing opportunities to improve biocatalysts in terms of both the potential products that can be produced and their process performance. The key processes such as gasification, bioreactor designs, media formulation, and product recovery will be analysed. Finally, the state of commercialization of gas fermentation will be highlighted and an outlook will be provided.