Conversion of xylose under reducing conditions

1.4. The chemical pathway

Xylose, as all the other carbohydrates that can be isolated from lignocellulosic biomass, has a carbonyl function that is susceptible to transformations, including reduction. One of the most common compounds that can be derived from xylose is xylitol, a pentahydroxy chiral compound as depicted in Figure 9.

image10

Figure 9. Simplified conversion of D-xylose to D-xylitol.

Amongst the most reported catalysts in the literature are nickel and Raney nickel. According to Wisniak et al. [103] they are good catalysts for the production of xylitol from xylose with total conversion at 125 °C and 515 psi. In the same year, the authors published the use of ruthenium, rhodium and palladium for the reduction of xylose [104] concluding that the ef­ficiency of those metals was declining in the order Ru>Rh>Pd at temperatures around 100-125 °C under pressure. Mikkola et al. [105, 106] also used nickel as a catalyst by ultrason­ic process that generated close to 50 % conversion of xylose to xylitol. From this process was reported that an important problem was the deactivation of the catalyst. Utilisation of nickel also led to the publication of two patents, one in 2003 [107] and another in 2007 [108]. In the case of the first, the concept relied on the isomerization of D-xylose to L-xylose prior to cata­lytic reduction under a nickel catalyst.

Ruthenium as well as ruthenium-based compounds has also been reported as catalysts for the reduction of xylose to xylitol. Ruthenium has been operated at temperatures between 90 °C and 110 °C under pressure using ruthenium supported either on silica [109] or on carbon [110]. Conversion rates for the latter have been reported to reach 35 % to xylitol for the latter with coproduction of glycerol and ethylene glycol. Ruthenium chloride (RuCl3) has also been reported as a catalyst for the reduction of xylose to xylitol [111, 112].

Treatment of carbohydrates at a higher severity leads to the hydrogenolysis, implying not only the carbonyl compounds being reduce to alcohol but a breakage of the carbon-carbon bonds in the original carbohydrate. Recent work [113] shows that temperature above 250 °C and pressure between 600-1000 psi, can lead to conversion of xylose to ethylene glycol, pro­pylene glycol and glycerol, as depicted in Figure 10 below.

image11

Figure 10. Simplified conversion of D-xylose to ethylene glycol, propylene glycol and glycerol as reported by Crabtree et al. [113].

Production of ethylene glycol and glycerol has also been reported by Guha et al. [110] as a side product of their xylitol production. Hydrogenolysis of xylitol is a logical suite for re­duction of xylose and specific work has been reported using different catalytic systems and experimental setups. As an example, it was recently reported [114] that xylitol could be con­verted into a mixture of polyols and different other products as formic acid and lactic acid as well as xylitol, which, according to the previously mentioned work in this chapter, is giv­en when xylose is submitted to a noble metal catalyst under hydrogen. In this specific case, the catalyst was platinum supported on carbon under a base-catalyzed matrix. Chopade et al. [115] also presented a patent reporting the conversion of carbohydrates (including xylose) into polyols using a ruthenium catalyst as did Dubeck and Knapp in 1984 [116].

In 2010 it was reported the use of nickel as a catalyst for hydrogenolysis of xylose [117] whilst Kasehagen [118] reported hydrogenolysis of carbohydrates under a nickel-iron-cop­per catalyst using a matrix of alkali salts with glycerol as the main product. The effects of nickel was studied by Wright [119] but this time using tungsten as a co-catalyst. Finally, there is a report about hydrogenolysis of carbohydrates under a rhenium catalyst [120].