FUTURE NEEDS

Research efforts into using microalgae for CO2 sequestration, biodiesel produc­tion, and other VAP syntheses will continue to power several of the assets inherent in these photosynthetic organisms. The high lipid content of microalgae has been taken as the major screening criteria for selecting and exploiting such species for biodiesel production, but has not been evaluated critically. The species that have been exploited for biodiesel production are very few (Griffiths and Harrison, 2009). The majority of the research work has focused on increasing lipid content and bio­mass productivity, whereas the studies related to chemical conversion of lipid to biodiesel, quality improvement, and cost reduction of the process are progressing at a slow pace (Krohn et al., 2011). Taking into consideration the current scenario, there is a need to look into the complete fatty acid profile of microalgal lipids in addition

TABLE 11.4

Подпись: Species/Group Spirulina platensis/ Cyanobacteria Chlorella vulgaris/ Chlorophyta Dunaliella salina/ Chlorophyta Haematococcus pluvialis/Chlorophyta Odontella aurita/ Bacillariphyta Porphyridium cruentum/Rhodophyta Phaeodactylum tricornutum/ Bacillariophyta Lyngbya majuscola/ Cyanobacteria Crypthecodinium cohnii/Dinoflagellata Подпись: Product Phycocyanin, biomass Biomass Carotenoids, p-carotene Carotenoids, astaxanthin Fatty acids Polysaccharides Lipids, fatty acids Immune modulators Docosahexaenoic acid Подпись: Application Areas Health food, food color Health food, food supplement Health food, food supplement Health food, food supplement Baby food Nutrition Nutrition Подпись: Cultivation Systems Open ponds, natural lakes Open ponds, basins, glass-tube photobioreactors Open ponds, lagoons Open ponds, closed photobioreactors Open ponds Tubular photobioreactors Open ponds, basins
Подпись: Nutrition Supplement in infant formulas, dietary supplement
Подпись: Heterotrophic fermentation

Biotechnological Application of Some Microalgae Species for Food-Based Applications

Source: Adapted from Pulz and Gross (2004); and Raja et al. (2008).

to the qualitative and quantitative profiling of triacylglycerides and free fatty acids (Ramos et al., 2009; Liu et al., 2010). These factors primarily influence the quality of biodiesel produced. Once the right microalgae species have been selected consider­ing all physico-chemical properties, culture conditions can be optimized to obtain higher biomass productivity (Rodolfi et al., 2008) in an economical way in a raceway pond and/or closed photobioreactor system. In addition, an understanding of micro­algal behavior at the molecular level during the process of CO2 tolerance and uptake for intracellular lipid enhancement is a must.

Although CO2 sequestration by microalgae into biomass and triacylglycerol stor­age plays a critical role in an organism’s ability to withstand stress, information concerning the enzymes of CO2 uptake and tolerance, triacylglycerol synthesis, their regulation by nutrients, physiological conditions, their mechanisms of action along with the roles of specific isoforms has been limited by the lack of studies on pro — teomics and genomics (detailed protein and gene profiling) of microalgae for CO2 sequestration and biodiesel production.

The exploration of the vast biodiversity of microalgae in natural habitats for selection of suitable strains for CO2 sequestration and VAPs is possible. Potential
microalgae tolerating high CO2 concentrations can be isolated from relevant sources such as lakes, ponds, etc. near thermal power plants. The microalgal strains that can tolerate high CO2 concentrations and also synthesize food/feed and biofuel precur­sors need to be developed by exploring the microbial diversity. It should be possible to control the composition of food and biofuel precursors by suitably manipulating stress conditions such as light, temperature, and nutrients. The high performance of cultivation systems (open-pond and/or closed photobioreactor system) for microal­gae with high biomass productivity and energy efficiency should possibly be devel­oped through a fundamental understanding of culture behavior as well as gas-liquid mass transfer, reactor hydrodynamics, shear stress profiles, light penetration, pho­toperiod, etc.

Therefore, future research in this area is required to provide new insights into novel ways to use microalgae in economically viable value-added production processes along with their integration with CO2 sequestration.

REFERENCES

Abu-Khader, M. M. (2006). Recent progress in CO2 capture/sequestration: A review. Energy sources, Part A: Recovery, Utilization, and Environmental Effects, 28: 1261-1279.

Apt, K. E., and Behrens, P. W. (1999). Commercial developments in microalgal biotechnology. Journal of Phycology, 35: 215-226.

Arad, S. M., Adda, M., and Ephraim, C. (1985). The potential of production of sulfated poly­saccharides from Porphyridium. Plant and Soil, 89: 117-127.

Astorg, P. (1997). Food carotenoids and cancer prevention: An overview of current research.

Trends in Food Science and Technology, 8: 406-413.

Becker, E. W. (2004). Microalgae in human and animal nutrition. In Richmond, A., Ed. Handbook of Microalgal Culture. Biotechnology and Applied Phycology. Oxford: Blackwell Science, pp. 312-351.

Becker, E. W. (1988). Micro-algae for human and animal consumption. In Micro-Algal Biotechnology. Borowitzka, M. A., and Borowitzka, L. J. (Eds.). Cambridge: Cambridge University Press, pp. 222-256.

Becker, E. W. (1994). Microalgae. Biotechnology and Microbiology. Cambridge: Cambridge University Press, ISBN 978-0-521-06113.

Beer, L. L., Boyd, E. S., Peters, J. W., and Posewitz, M. C. (2009). Engineering algae for biohydrogen and biofuel production. Current Opinions in Biotechnology, 20(3): 264-271.

Ben-Amotz, A. (1999). Dunaliella P-carotene: From science to commerce. In Seckbach J. (Ed.), Enigmatic Microorganisms and Life in Extreme Environments. Kluwer, The Netherlands, pp. 401-410.

Bewicke, D., and Potter, B. A. (1984). Chlorella the Emerald Food. Ronin Publishing, Berkeley, CA.

Camacho, R. F., Garcia, C. F., Fernandez Sevilla, J. M., Chisti, Y., and Molina Grima, E. (2003). A mechanistic model of photosynthesis in microalgae. Biotechnology & Bioengineering, 81: 459-473.

Carlucci, M. J., Scolaro, L. A., and Damonte, E. B. (1999). Inhibitory action of natural carra­geenans on Herpes simplex virus infection of mouse astrocytes. Chemotherapy, 45(6): 429-436.

Chanakya, H. U.N., Mahapatra, D. M., Sarada, R., Chauhan, V. S., and Abitha, R. (2012). Sustainability of large-scale algal biofuel production in India. Journal of the Indian Institute of Science, 92(1): 63-98.

Cheng, L., Zhang, L., Chen, H., and Gao, C. (2006). Carbon dioxide removal from air by microalgae cultured in a membrane-photobioreactor. Separation and Purification Technology, 50(3): 324-329.

Chisti, Y. (2006). Microalgae as sustainable cell factories. Environmental Engineering and Management Journal, 5(3): 261-274.

Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25: 294-306.

Chisti, Y. (2008). Biodiesel from microalgae beats bioethanol. Trends Biotechnology, 26: 126-131.

Cysewski, G. R., and Lorenz, R. T. (2004). Industrial production of microalgal cell-mass and secondary products-species of high potential. Haematococcus. In Richmond, A., Ed. Handbook of Microalgal Culture. Biotechnology and Applied Phycology. Oxford: Blackwell Science, pp. 281-288.

Dayananda, C., Kumudha, A., Sarada, R., and Ravishankar, G. A. (2010). Isolation, character­ization and outdoor cultivation of green microalgae Botryococcus sp. Scientific Research and Essays, 5(17): 2497-2505.

Dayananda, C., Sarada, R., Usha Rani, M., Shamala, T. R., and Ravishankar, G. A. (2007). Autotrophic cultivation of Botryococcus braunii for the production of hydrocarbons and exopolysaccharides in various media. Biomass and Bioenergy, 31: 87-93.

Dayananda, C., Sarada, R., Srinivas, P., Shamala, T. R., and Ravishankar, G. A. (2006). Presence of methyl branched fatty acids and saturated hydrocarbons in botryococcene producing strain of Botryococcus braunii. Acta Physiologiae Plantarum, 28(3): 251-256.

Del Campo, J. A., Garcia-Gonzalez, M., and Guerrero, M. G. (2007). Outdoor cultivation of microalgae for carotenoid production: Current state and perspectives. Applied Microbiology and Biotechnology, 74: 1163-1174.

Del Campo, J. A., Rodriguez, H., Moreno, J., Varga, M. A., Rivas, J., and Guerrero, M. G. (2001). Lutein production by Muriellopsis sp. in an outdoor tubular photobiorector. Journal of Biotechnology, 81: 289-295.

Del Campo, J. A., Rodriguez, H., Moreno, J., Varga, M. A., Rivas, J., and Guerrero, M. G. (2000). Carotenoid content of chlorophycean microalgae. Factors determining lutein accumulation in Muriellopsis sp. (Chlorophyta). Journal of Biotechnology, 76: 51-59.

Del Campo, J. A., Rodriguez, H., Moreno, J., Varga, M. A., Rivas, J., and Guerrero, M. G. (2004). Accumulation of astaxanthin and lutein in Chlorella zofingiensis (Chlorophyta). Applied Microbiology and Biotechnology, 64: 848-854.

Demming-Adams, B., and Adams, W. W. III (2002). Antioxidants in photosynthesis and human nutrition. Science, 298: 2149-2153.

Eriksen, N. T. (2008). Production of phycocyanin-A pigment with applications in biol­ogy, biotechnology, foods and medicine. Applied Microbiology and Biotechnology, 80: 1-14.

FAO/WHO. Energy and Protein Requirement. Report of a Joint FAO/WHO ad hoc Expert Committee. Vol. 52. Geneva: FAO.

Fargione, J., Hill, J., Tilman, D., Polasky, S., and Hawthorne, P. (2008). Land clearing and the biofuel carbon debit. Science, 319: 1235-1238.

Francisco, E. C., Neves, B. D., Lopes, J. E., and Franco, T. T. (2010). Microalgae as feedstock for biodiesel production: Carbon dioxide sequestration, lipid production and biofuel quality. Journal of Chemical Technology and Biotechnology, 85: 395-403.

Fulke, A. B., Mudliar, S. N., Yadav, R., Shekh, A., Srinivasan, N., Ramanan, R., Krishnamurthi, K., Devi, S. S., and Chakrabarti, T. (2010). Bio-mitigation of CO2, calcite formation and simultaneous biodiesel precursor’s production using Chlorella sp. Bioresource Technology, 101: 8473-8476.

Garcia-Gonzalez, M., Moreno, J., Manzano, C., Florencio, F. J., and Guerrero, M. G. (2005). Production of Dunaliella salina biomass rich in 9-cis P-carotene and lutein in a closed tubular photobioreactor. Journal of Biotechnology, 115: 81-90.

Gouveia, L., and Empis, J. (2003). Relative stabilities of microalgal carotenoids in microalgal extracts, biomass and fish feed: Effect of storage conditions. Innovative Food Science and Emerging Technology, 4: 227-233.

Griffiths, M. J., and Harrison, T. L. (2009). Lipid productivity as a key characteristic for choosing algal species for biodiesel production. Journal of Applied Phycology, 21: 493-507.

Guerin, M., Huntley, M. E., and Olaizola, M. (2003). Haematococcus astaxanthin: Applications for human health and nutrition. Trends Biotechnology, 21: 210-216.

Hende, S. V.D., Vervaeren, H., and Boon, N. (2012). Flue gas compounds and microalgae: Bio-chemical interactions leading to biotechnological opportunities. Bioresource Technology, 30(6): 1405-1424.

Higuera-Ciapara, I., Felix-Valenzuela, L., and Goycoolea, F. M. (2006). Astaxanthin: A review of its chemistry and applications. Critical Reviews in Food Science and Nutrition, 46: 185-196.

Ho, S. H., Chen, C. Y., Yeh, K. L., Chen, W. M., Lin, C. Y., and Chang, J. S. (2010). Characterization of photosynthetic carbon dioxide fixation ability of indigenous Scenedesmus obliquus isolates. Biochemical Engineering Journal, 53(1): 57-62.

Hu, Q. H. (2004). Industrial production of microalgal cell-mass and secondary products-major industrial species. Arthrospira (Spirulina)platensis sp. In Richmond, A., Ed. Handbook of Microalgal Culture. Biotechnology and Applied Phycology. Oxford: Blackwell Science, pp. 254-272.

Humphrey, A. M. (2004). Chlorophyll as a colour and functional ingredient. Journal of Food Science, 69: 422-425.

Hussein, G., Sankawa, U., Goto, H., Masumoto, K., and Watanabe, H. (2006). Astaxanthin, a carotenoid with potential in human health and nutrition. Journal of Natural Products, 69: 443-449.

Intergovernmental Panel on Climate Change [IPCC] (2007). Observed changes in climate and their effect. Climate Change 2007: Synthesis Report, pp. 30.

Iwamoto, H. (2004). Industrial production of microalgal cell mass and secondary products — major industrial species. In Richmond, A., Ed. Handbook of Microalgal Culture. Biotechnology and Applied Phycology, Oxford: Blackwell Science, pp. 270-281.

Johnson, E., Krinsky, N., and Russel, R. (1996). Serum response of all-trans and 9-cis isomers of P-carotene in humans. Journal of the American College of Nutrition, 15: 620-624.

Kamath, S. B., Srikanta, M., Shylaja, M. D., Sarada, R., and Ravishankar, G. A. (2008). Ulcer preventive and antioxidant properties of astaxanthin from H. pluvialis. European Journal of Pharmacology, 500: 387-395.

Krinsky, N. I., and Johnson, E. J. (2005). Carotenoid actions and their relation to health and disease. Molecular Aspects of Medicine, 26: 459-516.

Kumar, A., Ergas, S., Yuan, X., Sahu, A., Zhang, Q., Dewulf, J., Malcata, F. X., and Langenhove, H. V. (2010). Enhanced CO2 fixation and biofuel production via microalgae: Recent developments and future directions. Trends in Biotechnology, 28: 371-380.

Lam, K. M., and Lee, T. K. (2011). Microalgae biofuels: A critical review of issues, problems and the way forward. Biotechnology Advances, doi: 10.1016/j. biotechadv.2011.11.008.

Li, Q., and Du, W., (2008). Perspectives of microbial oils for biodiesel production. Applied Microbiology and Biotechnology, 80(5): 749-756.

Liu, J., Huang, J., Fan, K. W., Jiang, Y., Zhong, Y., Sun, Z., and Chen, F. (2010). Production potential of Chlorella zofingienesis as a feedstock for biodiesel. Bioresource Technology, 101: 8658-8663.

Lorenz, R. T., and Cysewski, G. R. (2000). Commercial potential for Haematococcus microal­gae as a natural source of astaxanthin. Trends in Biotechnology, 18: 160-167.

Margalith, P. Z. (1999). Production of ketocarotenoids by microalgae. Applied Microbiology and Biotechnology, 51: 431-438.

Martek Biosciences Corporation. History of Martek. Martek Biosciences. http://martek. com/ about/history. aspx.

Mata, T. M., Martins, A. A., and Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews, 14: 217-232.

Metting, F. B. (1996). Biodiversity and application of microalgae. Journal of Industrial Microbiology, 17: 477-489.

Molina Grima, E., Acien Fernandez, F. G., Garcia Camacho, F., Camacho Rubio, F., and Chisti, Y. (2000). Scale-up of tubular photobioreactors. Journal of Applied Phycology, 12: 355-368.

Molini Grima, E., Belarbi, E. H., Fernandez, F. G.A., Medina, A. R., and Chisti, Y. (2003). Recovery of microalgae biomass and metabolites: Process options and economics. Biotechnology Advances, 20: 491-515.

National Algal Biofuels Technology Roadmap (2010). U. S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Biomass Program.

Olaizola, M. (2003). Commercial development of microalgal biotechnology: From the test tube to the marketplace. Biomolecular Engineering, 20: 459-466.

Olaizola, M., and Huntley, M. E. (2003). Recent advances in commercial production of astax — anthin from microalgae. In Fingerman M., and Nagabhushanam R. (Eds.). Biomaterials and Bioprocessing. Enfield Science Publishers. pp. 143-164.

Olaizola, M. (2012). Commercial production of astaxanthin from Haematococcus pluvialis using 25,000 litre outdoor photobioreactors. Journal of Applied Phycology, 12(3): 499-506.

Pulz, O., and Gross, W. (2004). Valuable products from biotechnology of microalgae. Applied Microbiology and Biotechnology, 65: 635-648.

Puotinen, C. J. (1999). Herbs for Detoxification. New York: McGraw-Hill Professional, p. 25.

Radmer, R. J. (1996). Algal diversity and commercial algal products. Bioscience, 46: 263-270.

Raja, R., Hemaiswarya, S., and Rengasamy, R. (2007). Exploitation of Dunaliella for P-carotene production. Applied Microbiology and Biotechnology, 74: 517-523.

Raja, R., Hemaiswarya, S., Ashok Kumar, N., Sridhar, S., and Rengaswamy, R. A perspec­tive on biotechnological potential of microalgae. Critical Reviews in Microbiology, 34: 34-77.

Ramanan, R., Kannan, K., Devi, S. S., Mudliar, S., Kaur, S., Tripathi, A. K., and Chakrabarti, T. (2009a). Bio-sequestration of carbon dioxide using carbonic anhydrase enzyme purified from Citrobacter freundii. World Journal of Microbiology Biotechnology, 25: 981-987.

Ramanan, R., Kannan, K., Vinayagamoorthy, N., Ramkumar, K. M., Devi, S. S., and Chakrabarti, T. (2009b). Purification and characterization of a novel plant-type carbonic anhydrase from Bacillus subtilis. Biotechnology and Bioprocess Engineering, 14: 32-37.

Ramos, M. J., Fernandez, C. M., Casas, A., Rodriguez, L., and Perez, A. (2009). Influence of fatty acid composition of raw materials on biodiesel properties. Bioresource Technology, 100(1): 261-268.

Reifert, H. (2007). Anthropogenic change-CO2 rising faster. Proceedings of the National Academy of Sciences U. S.A., 104: 10288-10293.

Sanchez, M. A., Contreras, G. A., Garcia, C. F, Molina, G. E., and Chisti, Y. (1999). Comparative evaluation of compact photobioreactors for large-scale monoculture of microalgae. Journal of Biotechnology, 70: 249-270.

Sheehan, J., Dunahay, T., Benemann, J., and Roessler, P. (1998). A Look Back at the U. S. Department of Energy’s Aquatic Species Program: Biodiesel from Algae. National Renewable Energy Laboratory (NREL), U. S. Department of Energy.

Shekh, A. Y., Krishnamurthi, K., Mudliar, S. N., Yadav, R. R., Fulke, A. B., Devi, S. S., and Chakrabarti, T. (2012). Recent advancements in carbonic anhydrase driven processes for CO2 sequestration: Mini review. Critical Reviews in Environmental Science and Technology, 42(14): 1419-1440.

Shi, X., Zhengyun, W., and Chen, F. (2006). Kinetic model of lutein production by heterotro­phic Chlorella at various pH and temperature. Molecular Nutrition and Food Research, 50: 763-768.

Singh, S., Bhushan, K. N., and Banerjee, U. C. (2005). Bioactive compounds from cyanobacte­ria and microalgae: An overview. Critical Review Biotechnology, 25(3): 73-95.

Spolaore, P., Joannis-Cassan, C., Duran, E., and Isambert, A. (2006). Commercial applications of microalgae. Journal of Biosciences and Bioengineering, 10: 87-96; Energy Science and Research, 25: 31-43.

Telfer, A. (2002). What is P-carotene doing in the photosystem II reaction centre? Philosophical Transactions of the Royal Society of London B: Biological Sciences, 357: 1431-1439.

Verma, N. M., Mehrotra, S., Shukla, A., and Mishra, B. N. (2010). Prospective of biodiesel production utilizing microalgae as the cell factories: A comprehensive discussion. African Journal of Biotechnology, 9(10): 1402-1411.

Vilchez, G., Garbayo, I., Lobato, M. V., and Vega, J. M. (1997). Microalgae-mediated chemi­cals production and wastes removal. Enzyme and Microbial Technology, 20: 562-572.

Von Laar, J., Stahl, W., Bolsen, K., Goerz, G., and Sies, H. (1996). P-Carotene serum levels in patients with erythropoietic protoporphyria on treatment with the synthetic all-trans isomer or a natural isomeric mixture of P-carotene. Journal of Photochemistry and Photobiology: B, 33: 157-162.

Vorst, P., Baard, R. L., Mur, L. R., Korhals, H. J., and Van, D. (1994). Effect of growth arrest on carotene accumulation photosynthesis in Dunaliella. Microbiology, 140: 1411-1417.

Wang, Y., Noguchi, K., and Terashima, I. (2008). Distinct light responses of the adaxial and abaxial stomata in intact leaves of Helianthus annuus L. Plant Cell Environment, 31: 1307-1316.

Yadav, R. R., Mudliar, S. N., Shekh, A. Y., Fulke, A. B., Devi, S. S., Krishnamurthi, K., Juwarkar, A., and Chakrabarti, T. (2012). Immobilization of carbonic anhydrase in alginate and its influence on transformation of CO2 to calcite, Process Biochemistry, 47(12): 585-590.

Yang, J., Qiu, H. G., Huang, J. K., and Rozelle, S., 2008. Fighting global food price rises in the developing world: The response of China and its effect on domestic and world markets. Agricultural Economics, 39, 453-464.

Yeesang, C., and Cheirsilp, B. (2011). Effect of nitrogen, salt, and iron content in the growth medium and light intensity on lipid production by microalgae isolated from freshwater sources in Thailand. Bioresource Technology, 102(3): 3034-3040.

Yuan, J. P., Juan, P., Yin, K., and Wang, J. H. (2011). Potential health-promoting effects of astaxanthin: A high-value carotenoid mostly from microalgae. Molecular Nutrition and Food Research, 55: 150-165.

Zhao, B., Zhang, Y., Xiong, K., Zhang, Z., Hao, X., and Liu, T. (2011). Effect of cultiva­tion mode on microalgae growth and CO2 fixation, Chemical Engineering Research and Design, 89(9): 1758-1762.