CONCLUDING REMARKS

The detection of new and rare species is made easier due to the accessibility of classifications based on genotypic and phenotypic data. This will be valuable in the challenges facing systematic classification and the need for establishing well — defined taxa, a stable nomenclature, and enhanced identification procedures. Large — scale screening for bioactive compounds of industrial application necessitates rapid and unequivocal characterization of enormous numbers of algal isolates. Because these biocatalytic compounds hold persistent value as an input for the biotechnology industry, the conservation of microbial gene pools is critical. Ex-situ collections are and will continue to be an essential cradle for warranting that a source of living cells is available for research and manufacturing purposes. It is well documented that exploring the same or similar environments fails to reveal the same organisms again or even, if found, they would not exhibit the desired characteristics exhibited by the earlier strains. Nevertheless, maintenance of representatives of all identified species of algae and cell lines in ex-situ collections is unrealistic. Hence, it is suggested that future researchers and repositories should ensure the provision of the DNA rather than the organisms themselves. We are still largely in the hunter-and-gatherer stage of exploiting algae for food, bioactive compounds, and energy. Hence, further challenges in bioprospecting may includee the protection of intellectual property rights of original owners, a policy for strain distribution, and sharing and material transfer agreements.

REFERENCES

Adam, M. M., Rana, K. J., and McAndrew, B. J. (1995). Effect of cryoprotectants on activity of selected enzymes in fish embryos. Cryobiology, 32: 92-104.

Ahlgren, G., and Merino, L. (1991). Lipid analysis of freshwater microalgae: A method study. Arch. Hydrobiol., 121: 295-306.

Akoto, L., Pel, R., Irth, H., Brinkman, U. A.T., and Vreuls, R. J.J. (2005). Automated GC-MS analysis of raw biological samples: Application to fatty acid profiling of aquatic micro­organisms. J. Anal. Appl. Pyrol, 73: 69-75.

Andersen, R. A. (2005). Algal Culturing Techniques. Elsevier Academic Press, Burlington, MA.

Andersen, R. A., and Kawachi, M. (2005). Traditional microalgae isolation techniques. In R. A. Anderson (Ed.), Algal Culturing Techniques, Elsevier Academic Press, Burlington, MA, pp. 83-100.

Andersen, R., Morton, S. L., and Sexton, J. P. (1997). CCMP—Provasoli-Guillard National Center for Culture of Marine Phytoplankton 1997 list of strains. J. Phycol., 33 (suppl): 1-75.

Anon. (1999). World Federation for Culture Collections: Guidelines for the Establishment and Operation of Collections of Cultures of Microorganisms. Michael Grunenberg GmbH, Schoeppenstedt, Germany, p. 24.

Barsanti, L., and Gualtieri, P. (2006). Algae—Anatomy, Biochemistry, and Biotechnology. Boca Raton, Florida: CRC Press, pp. 215-235.

Berges, J. A., Franklin, D. J., and Harrison, P. J. (2001). Evolution of an artificial seawater medium: Improvements in enriched seawater, artificial water over the past two decades. J. Phycol., 37: 1138-1145.

Bhattarai, H., Paudel, B., Hong, Y. K., and Shin, H. (2007). A simple method to preserve algal spores of Ulva spp. in cold storage with ampicillin. Hydrobiologia, 592(1): 399.

Bigelow, N. W., Hardin, W. R., Barker, J. P., Ryken, S. A., MacRae, A. C., and Cattolico, R. A. (2011). A comprehensive GC-MS sub-microscale assay for fatty acids and its applica­tions. J. Am. Oil Chem. Soc., 88(9): 1329-1338.

Blackburn, S. I., Bolch, C. J.S., Haskard, K. A., and Hallegraeff, G. M. (2001). Reproductive compatibility among four global populations of the toxic dinoflagellate Gymnodinium catenatum (Dinophyceae). Phycologia, 40(1): 78-87.

Bligh, E. G., and Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol., 37: 911-915.

Bold, H. C. (1949). The morphology of Chlamydomonas chlamydogama sp. nov. Bull. Torrey Bot. Club, 76: 101-108.

Brahamsha, B. (1996). A genetic manipulation system for oceanic cyanobacteria of the genus Synechococcus. Appl. Environ. Microbiol, 62: 1747-1751.

Brennan, L., and Owende, P. (2010). Biofuels from microalgae — A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews, 14: 557-577.

Castenholz, R. W. (1988). Culturing methods for cyanobacteria. Methods Enzymol., 167: 68-93.

Chang, W. C., Lee, L. P., and Liepmann, D. (2005). Biomimetic technique for adhesion-based collection and separation of cells in a microfluidic channel, Lab Chip, 5: 64-73.

Chen, W., Sommerfeld, M., and Hu, Q. (2011). Microwave-assisted Nile Red method for in vivo quantification of neutral lipids in microalgae. Bioresource Technol., 102(1): 135-141. Available at <http://www. ncbi. nlm. nih. gov/pubmed/20638272>.

Chen, W., Zhang, C., Song, L., Sommerfield, M., and Hu, Q. (2009). A high throughput Nile Red method for quantitative measurement of neutral lipids in microalgae. J. Microbiol. Methods, 77(1): 41-47.

Chisti, Y. (2007). Biodiesel from microalgae. Biotechnol. Adv, 25: 294-306.

Chu, S. P. (1942). The influence of the mineral composition of the medium on the growth of planktonic algae. Part I. Methods and culture media. J. Ecol., 30: 284-325.

Cohn, S. A., Farrell, J. F., Munro, J. D., Ragland, R. L.,Weitzell, R. E., Jr., and Wibisono, B. L. (2003). The effect of temperature and mixed species composition on diatom motility and adhesion. Diatom Res., 18: 225-243.

Cooksey, K. E., Guckert, J. B., Williams, S. A., and Callis, P. R. (1987). Fluorometric deter­mination of the neutral lipid-content of microalgal cells using Nile Red. J. Microbiol. Methods, 6(6): 333-345.

Cooper, M. S., D’Amico, L. A., and Henry, C. A. (1999). Confocal microscopic analysis of morphogenetic movements. Methods Cell Biol., 59: 179-204.

Cooper, M. S., Hardin, W. R., Petersen, T. W., and Cattolico, R. N. (2010). Visualizing green oil in live algal cells. J. Biosci. Bioeng., 109: 198-201.

Crosbie, N. D., Pockl, M., and Weisse, T. (2003). Rapid establishment of clonal isolates of freshwater autotrophic picoplankton by single-cell and single-colony sorting. J. Microbiol. Methods, 55: 361-370.

Davey, H. M., and Kell, D. B. (1996). Flow cytometry and cell sorting of heterogeneous micro­bial populations: The importance of single-cell analyses. Microbiol. Rev, 60: 641-696.

Day, J. G. (1999). Conservation strategies for algae. In Benson, E. E. (Ed.), Plant Conservation Biotechnology. Taylor and Francis Ltd., London, pp. 111-124.

Day, J. G., and Brand, J. J. (2005). Cryopreservation methods for maintaining microalgal cul­tures. In Andersen, R. A. (Ed.), Algal Culturing Techniques. Elsevier Academic Press, Burlington, MA.

Day, J. G., Fleck, R. A., and Benson, E. E. (2000). Cryopreservation recalcitrance in microal­gae: Novel approaches to identify and avoid cryo-injury. J. Appl. Phycol., 12: 369-377.

De la Jara, A., Mendoza, H., Martel, A., Molina, C., Nordstron, L., de la Rosa, V., and Diaz, R. (2003). Flow cytometric determination of lipid content in a marine dinoflagellate, Crypthecodinium cohnii. J. Appl. Phycol., 15: 433-438.

Dean, A. P., Sigee, D. C., Estrada, B., and Pittmann, J. K. (2010). Using FTIR spectroscopy for rapid determination of lipid accumulation in response to nitrogen limitation in freshwater microalgae. Bioresour. Technol., 101: 4499-4507.

Doh, I., and Cho, Y. H. (2005). A continuous cell separation chip using hydrodynamic dielec­trophoresis (DEP) process. Sensor Actuat. A-Phys., 12: 59-65.

Elsey, D., Jameson, D., Raleigh, B., and Cooney, M. J. (2007). Fluorescent measurement of microalgal neutral lipids. J. Microbiolog. Methods, 68: 639-642.

Elster, J., Seckbach, J., Vincent, W. F., and Lhotsky, O. (Eds.) (2001). Algae and Extreme Environments. Ecology and Physiology. Nova Hedwigia, Suppl. 123, p. 602.

Genicot, G., Leroy, J. L.M. R., and Van Soom, A. (2005). The use of a fluorescent dye, Nile Red, to evaluate the lipid content of single mammalian oocytes. Theriogenology, 63: 1181-1194.

Godhe, A., Anderson, D. M., and Rehnstam-Holm, A. S. (2002). PCR amplification of microal­gal DNA for sequencing and species identification: Studies on fixatives and algal growth stages. Harmful Algae, 27: 1-8.

Goldman, J. C., and McCarthy, J. J. (1978). Steady state growth and ammonium uptake of a fast growing marine diatom. Limnol. Oceanogr, 23: 695-703.

Govender, T., Ramanna, L., Rawat, I., and Bux, F. (2012). Bodipy, an alternative to Nile Red staining technique for intracellular lipid evaluation, Bioresour. Technol., 114: 507-511.

Graham, L. E., and Wilcox, L. W. (2000). Algae. Prentice Hall, Upper Saddle River, NJ, p. 700.

Greenspan, P., and Fowler, S. D. (1985). Spectrofluorometric studies of the lipid probe, Nile Red. J. Lipid Res., 26: 781-788.

Guillard, R. R.L. (1973). Methods for microflagellates and nannoplankton. In Handbook of Phycological Methods. Culture Methods and Growth Measurements, J. Stein (Ed.), 69-85. New York: Cambridge University Press.

Guillard, R. R.L. (1975). Culture of phytoplankton for feeding marine invertebrates. In W. L. Smith and M. H. Chantey (Eds.), Culture of Marine Invertebrate Animals. New York: Plenum Publishers, pp. 29-60.

Guillard, R. R.L., and Hargraves, P. E. (1993). Stichochrysis immobilisis a diatom, not a chryso — phyte. Phycologia, 32: 234-236.

Gunstone, F. D., and Harwood, J. L. (2007). Occurrence and characterisation of oils and fats. In Gunstone, F. D., Harwood, J. L., and Dijkstra, J. L., Eds., The Lipid Handbook. CRC Press; Boca Raton, FL, pp. 37-141.

Han, K. H., and Frazier, A. B. (2005). A microfluidic system for continuous magnetophoretic separation of suspended cells using their native magnetic properties. Proc. Nanotech., 1: 187-190.

Harrison, P. J., Waters, R. E., and Taylor, FJ. R. (1980). A broad spectrum artificial seawater medium for coastal and open ocean phytoplankton. J. Phycol., 16: 28-35.

Heaney, S. I. and Jaworski, G. H.M. (1977). A simple separation technique for purifying micro­algae. Br. Phycol. J, 12: 171-174.

Hoshaw, R. W., and Rosowksi, J. R. (1973). Methods for microscopic algae. In Handbook of Phycological Methods. Culture Methods and Growth Measurements, J. Stein (Ed.), 53-67. New York: Cambridge University Press.

Huang, Y. Y., Beal, C. M., Cai, W. W., Ruoff, R. S., and Terentjev, E. M. (2010). Micro-Raman spectroscopy of algae: Composition analysis and fluorescence background behavior. Biotechnol. Bioeng., 105: 889-898.

Isaac, S., and Jennings, D. (1995). Microbial Culture. Scientific Publishers Ltd., Oxford, UK, pp. 115-121.

Jeffrey, S. W., and LeRoi, J.-M. (1997). Simple procedures for growing SCOR reference micro­algal cultures. In S. W. Jeffrey, R. F.C. Mantoura, and S. W. Wright (Eds.) Phytoplankton pigments in oceanography: Monographs on oceanographic methodology 10, France: UNESCO, pp. 181-205.

Johnson, M. K., Johnson, E. J., MacElroy, R. D., Speer, H. L., and Bruff, B. S. (1968). Effects of salts on the halophylic alga Dunaliella viridis. J. Bacteriol., 95, 1461-1468.

Kacka, A., and Donmez, G. (2008). Isolation of Dunaliella spp. from a hypersaline lake and their ability to accumulate glycerol’. Bioresour. Technol, 99: 8348-8352.

Khan, S. A., Rashmi, Hussain, M. Z., Prasad, S., and Banerjee, U. C. (2009). Prospects of bio­diesel production from microalgae in India. Renewable and Sustainable Energy Rev., 13: 2361-2372.

Kilham, S. S., Kreeger, D. A., Lynn, S. G., Goulden, C. E., and Herrera, L. (1998). COMBO: A defined fresh water culture medium for algae and zooplankton. Hydrobiologia, 377: 147-159.

Knuckey, R. M., Brown, M. R., Barrett, S. M., and Hallegraeff, G. M. (2002). Isolation of new nanoplanktonic diatom strains and their evaluation as diets for juvenile Pacific oysters (Crassostrea gigas). Aquaculture, 211: 253-274.

Laughton, C. (1986). Measurement of the specific lipid content of attached cells in microtitre cultures. Anal. Biochem., 156: 307-314.

Laurens, L. M.L., and Wolfrum, E. J. (2011). Feasibility of spectroscopic characterization of algal lipids: Chemometric correlation of NIR and FTIR spectra with exogenous lipids in algal biomass. Bioenergy Res., 4: 22-35.

Lee, S. J., Yoon, B. D., and Oh, H. M. (1998). Rapid method for the determination of lipid from the green alga Botryococcus braunii. Biotechnol. Tech, 12: 553-556.

Leeson, E. A., Cann, J. P., and Morris, G. J. (1984). Maintenance of algae and protozoa. In Kirsop, B. E., and Snell, J. J.S. (Eds.), Maintenance of Microorganisms. Academic Press, London, pp. 131-160.

Lehman, J. T. (1976). Photosynthetic capacity and luxury uptake of carbon during phosphate limitation in Pediastrum duplex (Chlorophyceae). J. Phycol, 12: 190-193.

Lewin, R. A. (1959). The isolation of algae. Rev. Algol. (new series), 3: 181-197.

Lokhorst G. M. (2003). The genus Tribonema (Xanthophyceae) in the Netherlands. An inte­grated field and culture study. Nova Hedwigia, 77: 19-53.

McDaniel, H. R., Middlebrook, J. B., and Bowman, R. O. (1962). Isolation of pure cultures of algae from contaminated cultures. Appl. Microbiol, 10: 223.

Melkonian, M. (1990). Phylum Chlorophyta: Class Chlorophyceae. In Handbook of Protoctista, Margulis, L., Corliss, J. O., Melkonian, M. and Chapman, D. J., (Eds.), 600-607. Boston: Jones and Bartlett Publishers.

Morel, F. M.M., Westall, J. C., Reuter, J. G., and Chaplick, J. P. (1975). Description of the algal growth media “Aquil” and “Fraquil.” Water Quality Laboratory, Ralph Parsons Laboratory for Water Resources and Hydrodynamics, Cambridge, Massachusetts: Massachusetts Institute of Technology, Technical Report 16, p. 33.

Moreno-Garrido, I. (2008). Microalgae immobilization: Current techniques and uses. Bioresour. Technol., 99: 3949-3964.

Mutanda, T., Ramesh, D., Karthikeyan, S., Kumari, S., Anandraj, A., and Bux, F. (2011) Bioprospecting for hyper-lipid producing microalgal strains for sustainable biofuel pro­duction. Bioresource Technol., 101(1): 57-70.

Nalewajko, C., Lee, K., and Olaveson, M. (1995). Responses of freshwater algae to inhibitory vanadium concentrations: The role of phosphorus. J. Phycol, 31: 332-343.

Nichols, H. W. (1973). Growth media—freshwater. In Stein, J. (Ed.) Handbook of Phycological Methods, Culture Methods and Growth Measurements, Cambridge, UK: Cambridge University Press, pp. 7-24.

Noel, M.-H., Kawachi, M., and Inouye, I. (2004). Induced dimorphic life cycle of a cocco- lithophorid, Calyptrosphaera sphaeroidea (Prymnesiophyceae, Haptophyta). J. Phycol, 40: 112-129.

Norton, T. A., Melkonian, M., and Andersen, R. A. (1996). Algal biodiversity. Phycologia, 35(4): 308-326.

Olaizola, M. (2003). Commercial development of microalgal biotechnology: From the test tube to the market place. Biomol. Eng., 20: 459-466.

Petersson, F., Nilsson, A., Holm, C., Jonsson, H., and Laurell, T. (2004). Separation of lipids from blood utilizing ultrasonic standing waves in microfluidic channels. Analyst, 129: 938-943.

Raja, R., Hemaiswarya, S., Kumar, N. A., Sridhar, S., and Rengasamy, R. (2008). A perspec­tive on the biotechnological potential of microalgae. Crit. Rev. Microbiol., 34(2): 77-88.

Reardon, E. M., Price, C. A., and Guillard, R. R.L. (1979). Harvest of marine microalgae by centrifugation in density gradients of Percoll. In Reid, E. (Ed.), Cell Populations. Methodological Surveys (B) Biochemistry. Vol. 8. John Wiley & Sons, New York, pp. 171-175.

Reckermann, M. (2000). Flow sorting in aquatic ecology. Science, 64: 235-246.

Richmond, A. (1983). Handbook of Microalgal Mass Culture, Boca Raton, Florida: CRC Press.

Richmond, A., (2004). Handbook of Microalgal Culture: Biotechnology and Applied Phycology, Blackwell Science Ltd., Malden, MA, p. 566.

Rippka, R. (1988). Isolation and purification of cyanobacteria. Method Enzymol., 167: 3-27.

Rippka, R., De Reuelles, J., Waterbury, J. B., Herdman, M., and Stainer, R. Y. (1979). Generic assignments, strains histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol., 111: 1-161.

Rogerson, A., De Freitas, A. S.W., and Mclnnes, A. C. (1986). Observations on wall morpho­genesis in Coscinodiscus asteromphalus (Bacillariophyceae). Trans. Am. Microsci. Soc., 105: 59-67.

Round, F. E. (1984). The Ecology of Algae. Cambridge University Press, Cambridge, UK, p. 664.

Santarius, K. A. (1996). Freezing of isolated thylakoid membranes in complex media. X. Interactions among various low molecular weight cryoprotectants. Cryobiology, 33: 118-126.

Sensen, C., Heimann, K., and Melkonian, M. (1993). The production of clonal and axenic cul­tures of microalgae using fluorescence activated cell sorting. Eur. J. Phycol., 28: 93-97.

Sheehan, J., Dunahay, T., Benemann, J., and Roessler, P. (1998). A look back at the U. S. Department of Energy’s aquatic species program — Biodiesel from algae. Available <http://www. nrel. gov/docs/fy04osti/34796.pdf>.

Shevkoplyas, S. S., Yoshida, T., Munn, L. L., and Bitensky, M. W. (2005). Biomimetic autosep­aration of leukocytes from whole blood in a microfluidic device. Anal. Chem., 77: 933-937.

Sieracki, M. E., Poulton, N. J., and Crosbie, N. (2005). Automated isolation techniques for microalgae. In R. A. Anderson (Ed.), Algal Culturing Techniques, Elsevier Academic Press, Burlington, MA, pp. 101-116.

Sinigalliano, C. D., Winshell, J., Guerrero, M. A., Scorzetti, G., Fell, J. W., Eaton, R. W., Brand, L., and Rein, K. S. (2009). Viable cell sorting of dinoflagellates by multiparametric flow cytometry. Phycologia, 48: 249-257.

Spolaore, P., Joannis-Cassan, C., Duran, E., and Isambert, A. (2006). Commercial applications of microalgae. J. Biosci. Bioeng., 101: 87-96.

Steup, M., and Melknonian, M. (1981). C-l,4-Glucan phosphorylase forms in the green alga Eremosphaera viridis. Physiol. Plant., 51: 343-348.

Takahashi, K., Hattori, A., Suzuki, I., Ichiki, T., and Yasuda, K. (2004). Non-destructive onchip cell sorting system with real-time microscopic image processing. J. Nanobiotechnol., 2: 5.

Tang, Y. Z., and Dobbs, F. C. (2007). Green autofluorescence in dinoflagellates, diatoms, and other microalgae and its implications for vital staining and morphological studies. Appl. Environ. Microbiol., 73: 2306-2313.

Taylor, R., and Fletcher, R. L. (1998). Cryopreservation of eukaryotic algae—A review of methodologies. J. Appl. Phycol., 10: 481-501.

The World Conservation Union. (2010). IUCN Red List of Threatened Species. Summary Statistics for Globally Threatened Species. Table1: Numbers of threatened species by major groups of organisms (1996-2010). <http://www. iucnredlist. org/documents/ summarystatistics/2010_1RL_Stats_Table 1.pdf>.

Throndsen, J. (1978). Preservation and storage. In Sournia, A. A., (Ed.), Phytoplankton Manual: Monographs on Oceanographic Methodology 6. UNESCO, Paris, pp. 69-74.

Vonshak, A. (1986). Laboratory techniques for the cultivation of microalgae. In Richmond, A. (Ed.). CRC Handbook of Microalgal Mass Culture. Boca Raton, Florida: CRC Press. pp. 117-145.

Walne, P. R. (1970). Studies on food value of nineteen genera of algae to juvenile bivalves of the genera Ostrea, Crassostrea, Mercenaria and Mytilus. Fish. Invest. Lond. Ser. 2., 26(5): 1-62.

Warren, A., Day, J. G., and Brown, S. (2002). Cultivation of protozoa and algae. In Hurst, C. J., Crawford, R. L., Knudsen, G. R., McInerney, M. J., and Stezenbach, L. D. (Eds.), Manual of Environmental Microbiology, 2nd ed. ASM Press, Washington, D. C., pp. 71-83.

Watanabe, M. M., Kawachi, M., Hiroki, M., and Kasai, F. (2000). NIES Collection List of Strains. Sixth Edition, 2000, Microalgae and Protozoa. Tsukuba, Japan: Microbial Culture Collections, National Institute for Environmental Studies, p. 159.

Waterbury, J. B., Watson, S. W., Valois, F. W., and Franks, D. G. (1986). Biological and eco­logical characterization of the marine unicellular cyanobacterium Synechococcus. Can. Bull. Fish. Aquatic Sci., 214: 71-120.

Wetzel, R. G., and Likens, G. E. (2000). Limnological Analyses, third edition. Springer-Verlag, New York, p. 429.

Wiedeman, V. E., Walne, P. L. and Trainor, F. R. (1964). A new technique for obtaining axenic cultures of algae. Can. J. Bot., X: 958-959.

Wilkie, A. C., and Mulbry, W. W. (2002). Recovery of dairy manure nutrients by benthic fresh­water algae, Bioresour. Technol., 84(1): 81-91.

Wilkie, A. C., Edmundson, S. J., and Duncan, J. G. (2011). Indigenous algae for local biore­source production: Phycoprospecting. Energy for Sustainable Develop., 15: 365-371.

World Agricultural Supply and Demand Estimates. (2012). WASDE-503, February 9, 2012. U. S. Department of Agriculture, World Agricultural Outlook Board, Washington, D. C.: 2012, <http://www. usda. gov/oce/commodity/wasde/latest. pdf>.

Wu, H., Volponi, J. V., Oliver, A. E., Parikh, A. N., Simmons, B. A., and Singh, S. (2011). In vivo lipidomics using single-cell Raman spectroscopy. Proc. Natl. Acad. Sci. USA, 108(9): 3809-3814.

Yamada, M., Kasim, V., Nakashima, M., Edahiro, J., and Seki, M. (2002). Continuous cell partitioning using an aqueous two-phase flow system in microfluidic devices. Biotechnol. Bioeng., 78(4): 467-472. Retrieved from <http://www. ncbi. nlm. nih. gov/ pubmed/15459911>.

Yang, H. L., Lu, C. K., Chen, S. F., Chen, Y. M., and Chen, Y. M. (2010). Isolation and charac­terization of Taiwanese heterotrophic microalgae: Screening of strains for docosahexae — noic acid (DHA) production. Mar. Biotechnol., 12(2): 173-185.

Zhou, W., Li, Y., Min, M., Hu, B., Chen, P., and Ruan, R. (2011). Local bioprospecting for high-lipid producing microalgal strains to be grown on concentrated municipal waste­water for biofuel production. Bioresource Technology, 102(13): 6909-6919.