Environmental Impacts of Biomass Production

Most traditional biofuels, such as ethanol from corn, wheat, or sugar beets, and biodiesel from oil seeds, are produced from classic agricultural food crops that re­quire high-quality agricultural land for growth. An important parameter for biomass energy is the impact of land use. This impact category describes the environmen­tal impact resulting from land use for human activities. In particular, the land use category considers natural land as a resource and assumes that land occupation and management causes consumption of the resource. Natural land can be defined as land not damaged at the moment by human activities and the remaining natural land fraction under use. Land use is an impact indicator.

Land use impacts have been related to the area of land used, or physical land use. Specifically, they include impacts on biodiversity, biotic production potential (including soil fertility and use value of biodiversity), and ecological soil quality (including life support functions of soil other than biomass production potential). The use of land to produce biofuels in a well-established infrastructure has an impact on the environment.

The environmental impacts of irrigation are the changes in the quantity and qual­ity of soil and water as a result of irrigation and the ensuing effects on natural and social conditions at the tail-end and downstream of the irrigation scheme. Irrigated agriculture depends on supplies from surface or ground water. Irrigation agriculture will be an essential component of any strategy to increase the global food supply. Improving the environmental performance of irrigation agriculture is important for its long-term sustainability. Irrigation projects and irrigated agriculture practices can impact the environment in a variety of ways. The environmental impact of irrigation systems depends on the nature of the water source, the quality of the water, and how it is delivered to the irrigated land. The management of water application systems as well as the suitability of related agronomic practices has a dramatic influence on the environmental impact of irrigated agriculture.

The ecosystem diversity of fuel applications confers many environmental, eco­nomic, and consumer benefits. The use of crop residues for bioenergy production must be critically assessed because of its positive impact on soil carbon sequestra­tion, soil quality maintenance, and ecosystem functions (Lal 2005).

Energy crops include fast growing trees such as hybrid poplar, black locust, wil­low, and silver maple, in addition to annual crops such as corn and sweet sorghum and perennial grasses such as switchgrass. Bioenergy from biomass, both residues and energy crops, can be converted into modern energy carriers such as hydrogen, methanol, ethanol, and electricity.

The impact of energy cropping on habitat and ecosystem diversity depends not only on the previous land use and cultivation but also on the nature of the energy crop. The role of energy cropping can play in the context of sustainable develop­ment, such as via the use of bioethanol, and its potential impact on biodiversity is a subject that warrants more concerted research (Adsavakulchai et al. 2004).

Conflicts exist today in the use of land, water, energy, and other environmental resources required by both food and biofuel production. Bioenergy supplies can be divided into two broad categories: (a) organic municipal waste and residues from the food and materials sectors and (b) dedicated energy crop plantations. The term “food supply chain” refers to the strict correlation and the functional link existing between the agriculture sector and transformation industry.

Serious problems face the world food supply today. The rapidly growing world population and rising consumption of biofuels is increasing demand for both food and biofuels. This exacerbates both food and fuel shortages. Using food crops such as corn grain to produce ethanol raises major nutritional and ethical concerns. Grow­ing crops for fuel squanders land, water, and energy resources vital for the produc­tion of food for human consumption. Using corn for ethanol increases the price of US beef, chicken, pork, eggs, breads, cereals, and milk by 10 to 30% (Demirbas 2006; Pimentel et al. 2008).

Many problems associated with biofuels have been ignored by scientists and pol­icymakers. The environmental impacts of corn ethanol are enormous: (1) corn pro­duction causes more soil erosion than any other crop grown; (2) more than 1,700 gal. of water are required to produce 1 gal. of corn ethanol; (3) enormous quantities of carbon dioxide are produced during corn ethanol production by the large quantity of fossil energy used in production, during fermentation, and when the soil is tilled, leaving soil organic matter exposed and oxidized. In addition, the conversion of cropland for biofuel production contributes to the release of GHGs, all of which speeds global warming; (4) using corn for ethanol increases the price of other foods dependent on manufacturing or animal feeding with corn (Demirbas and Demirbas 2007; Pimentel et al. 2008).

The use of soybeans as a potential biofuel source puts cropland in competition with food production. On the other hand, extensive use of vegetable oils in biodiesel production may cause other significant problems such as starvation in developing countries (Demirbas and Demirbas 2007; Demirbas 2007).