Effects of Wood Ash Application on Soil Properties

Wood ash is applied to forest soils to alleviate nutrient depletion and soil acidifica­tion, either alone or in combination with N fertiliser. Wood ash is also applied as lime replacement, providing base cations to increase soil pH (Steenari et al. 1999; Meiwes 1995; Brunner et al. 2004). This liming effect can be attributed to Ca and Mg carbonates in the ash as well as to its fine structure (Pitman 2006). Arvidsson and Lundkvist (2003) observed an increased soil pH after 3 Mg ha-1 wood ash application in young Norway spruce (Picea abies) stands. Moreover, concentra­tions of exchangeable Ca and Mg as well as the effective cation-exchange capacity were elevated compared with the control. As salts contained in the ash started to dissolve after application, high K, Na and SO4 concentrations were also found in the soil (Augusto et al. 2008). Jacobson et al. (2004) reported an increased soil pH and base-cation content 5 years after amendment with self-hardened and crushed ash (3, 6 or 9 t ha-1) or pelleted ash (3 t ha-1) on two different coniferous sites in Sweden, whereby the ash formulation did not have an effect on soil chemistry despite differences in solubility. Basic substances used to amend soil may, however, foster nitrification and nitrate leaching in soil ecosystems and hence enhance soil acidity, counteracting the positive effects of wood ash application (Meiwes 1995). Since ash components bind to organic substances in the humus layer of forest soils, fertilisation effects of wood ash amendments on soil acidity and extractable Ca and Mg were found to last for many years (Bramryd and Fransman 1995; Saarsalmi et al. 2001, 2004, 2005; Mandre et al. 2006). The impact of wood ash applications (9 and 18 Mg ha-1) on soil properties in different tree stands (European larch, aspen and poplar) was evaluated in a 7-year experiment in Michigan, revealing that wood ash was able to foster long-term productivity and repeated applications may even have the potential to make up for biomass-C losses due to plantation management operations (Sartori et al. 2007).