Tensile Load

Short bamboo fiber reinforced epoxy composites with varying fiber length, when tested for resistance to acetic acid, hydrochloric acid, toluene, carbon tetrachloride, benzene, ammonia, sodium carbonate, sodium hydroxide, and nitric acid show varia­tion in tensile load. This proves that bamboo fiber length affects the tensile load. The tensile load is found to be maximum at the fiber length of 30 mm (Rajulu et al. 1998).

2.4.5 Tensile Modulus

The tensile modulus of permanganate treated bamboo polyester fiber is seen to be increased by 118 % and that treated with benzoyl chloride is 118 % (Kushwaha and Kumar 2010). Bamboo fiber reinforced polypropylene composites show a signifi­cant increase in tensile modulus after addition of maleic anhydride polypropylene (MAPP) content in concentration of 24 % by weight. The composite is shown to have the tensile modulus of 5-6 GPa (Chen et al. 1998) . Due to high tensile modulus, bamboo fibers are excellent material for making composites (Rao and Rao 2007). By the addition of glass fiber by 20 % mass the tensile modulus of bamboo glass fiber reinforced polypropylene composite increases by 12.5 %. The reduction of tensile modulus in bamboo glass fiber reinforced poly propylene hybrid composites is two times more than reduction of tensile modulus in bamboo fiber reinforced poly propylene composites after 1,200 h of aging in water (Thwe and Liao 2002b). Tensile modulus of poly propylene based bamboo composites which use steam exploded fibers increases to about 30 %, due to well impregnation and reduction in void numbers (Okubo et al. 2004). The tensile modulus improves significantly with the addition of silane coupling agent Si69 in bamboo fibers (Ismail et al. 2002).