Effects of Ash Amendments on Trees and Ground Vegetation in Forest Ecosystems

When looking at the effect of wood ash amendments on tree growth in Nordic countries, Augusto et al. (2008) revealed a considerable site dependency using a meta-analysis approach. Whereas wood ash was not able to improve tree growth on mineral soils, it had a significant effect on trees planted on organic soils. Reviewing different studies from Finland, Sweden and Switzerland with regard to the impact of wood ash applications on tree growth and vitality, Lundstrom et al. (2003) reported neutral or even negative effects of ash fertilisation. Investigating the effect of hardened wood ash application (up to 3 Mg ha-1) on ground vegetation in young Norway spruce stands on mineral soils, Arvidsson et al. (2002) found that biodiver­sity and plant biomass were not affected. In a Swiss forest, fine roots of spruce were influenced by ash application (4 t ha-1) on mineral soil, whereby ash fertilisation enhanced the number of root tips, forks and the root length, but resulted in decreased root diameters (Genenger et al. 2003). In a set of field experiments applying wood ash (1-9 Mg ha-1) on 30-60-year-old Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) stands on mineral soil in Sweden, stem growth was only promoted when N (150 kg ha-1) was added, whereas wood ash amendments without N did not lead to significant responses (Jacobson 2003). The same was true for combined wood ash and N applications on a Scots pine (Pinus sylvestris) stand on a low-productivity mineral soil, where wood ash plus N positively influenced tree growth even 20 years after application. Nitrogen fertilisation alone only led to a short-term effect (Saarsalmi et al. 2006). Whereas wood ash or sludge application alone did not have any influence on the structure of a commercial willow plantation in central Sweden in a 3-year experiment, harvestable shoot biomass was increased by a combined sludge (2.6 t ha-1) and ash (5.5 t ha-1) treatment and thus gave results comparable to fertilisation with mineral fertiliser corresponding to 14.5 kg P ha-1 year-1, 48 kg K ha-1 year-1 and 100 kg N ha-1 year-1 (Adler et al. 2008). However, this treatment showed negative effects on wood fuel quality concerning P, K and heavy metal concentrations in the bark and wood. Plant growth or biomass production was also not influenced by wood ash fertilisation (10 and 20 Mg ha-1 for 3 years) in a willow plantation on a silt loam soil in the state of New York (Park et al. 2005). In this experiment, wood ash did not have an impact on nutrient concentrations of foliar, litter and stem tissue, whereas the concentrations of soil-extractable P, K, Ca and Mg were significantly higher than in control plots. In contrast, Moilanen et al. (2002) observed a positive effect of ash fertilisation (8 and 16 t ha-1) on tree volume growth even 50 years after amendment on a drained peat mire, being accompanied by elevated nutrient concentrations in the peat.

The results presented are attributed to the fact that ash is low in N, which is the main limiting element for plant growth on mineral soils in boreal forests. In contrast, ash fertilisation was considered to be more suitable for peatland forests displaying higher N contents (Hanell and Magnusson 2005) and was found to promote tree growth (height, diameter and biomass) of a young Pseudotsuga menziesii plantation and a Pinus radiata plantation on N-rich mineral soil in

Spain (Solla-GullcSn et al. 2006, 2008). Besides enhanced stem-wood growth of Norway spruce, Rosenberg et al. (2010) also observed increased CO2 evolution rates even 12 years after wood ash applications (6 Mg ha-1) on a N-rich soil, indicating that ash amendments of N-rich sites have to be evaluated carefully regarding their effect on C and N cycling.