Escherichia coli

In E. coli, the obvious and successful strategy to increase ethanol production has been the expression of the ethanologenic pathway from Z. mobilis, with the genes encoding PDC and ADH II organized in a single plasmid, the PET operon [73, 76], the latter integrated in the chromosome [134]. Subsequent selection of mutants with high ADH activity and disrupted fumarate reductase (for succinate produc­tion) originated KO11 strain that produces ethanol at a yield of 95% [135]. However, this strain is unable to grow in ethanol concentrations of 3.5% [199]. Evolutionary genetic engineering strategies were then, applied during a 3-month period, by alternating selection for ethanol tolerance in liquid media and selection for increased ethanol production in solid medium [199]. The resulting strain, LY01, was able to grow in ethanol concentrations of 5%. Coincidentally, this strain became more resistant to aldehydes (including HMF and furfural), organic acids, and alcohol compounds i. e. found in hemicelluloses hydrolysates [201-203]. However, LY01 strain performed poorly in mineral medium compared to rich medium [199]. To avoid dependence on nutritional supplementation, a new strain was produced from SZ110 [200], while the parental strain KO11 was engineered for lactate production in mineral medium [211].