Conclusions

In conclusion, numerous advances have been made in the conversion of biomass to biofuels as biomass is the only source that is renewable and economically available. Problems associated with inhibitor generation and detoxification, fermentation of both hexoses and pentoses to ethanol, and the development of efficient microbial strains have partially been addressed. Simultaneous product recovery and process consolidation and integration will further improve the economics of production of biofuels from biomass. It is emphasized that numerous domestic and international companies have initiated their programs to commercialize conversion of biomass to biofuels. Separation and use of coproducts as additional sources for generating additional revenue can strengthen the approach further. 1

Acknowledgements

Nasib Qureshi would like to thank Adam Wallenfang for his help on finding information on published data. Nasib Qureshi and Stephen Hughes would like to thank Michael A. Cotta (U. S. Department of Agriculture, Peoria, IL) for reading this manuscript and providing critical comments.

Endnote

1. Mention of trade names or commercial products in this article is solely for the purpose of providing scientific information and does not imply recommendation or endorsement by the U. S. Department of Agriculture.

References

Dien, B. S., M. A. Cotta, and T. W. Jeffries. 2003. Bacteria engineered for fuel ethanol production: Current status. Appl. Microbiol. Biotechnol. 63:258-266.

Ezeji, T. C., N. Qureshiand, and H. P. Blaschek. 2007a. Butanol production from agricultural residues: Impact of degradation products on Clostridium beijerinckii growth and butanol fermentation. Biotechnol. Bioeng. 97:1460-1469.

Ezeji, T. C., N. Qureshi, and H. P. Blaschek. 2007b. Bioproduction of butanol from biomass: From genes to bioreactors. Curr. Opin. Biotechnol. 18:220-227.

Grohmann, K. and R. J. Bothast. 1997. Saccharification of corn fibre by combined treatment with dilute sulfuric acid and enzymes. Proc. Biochem. 32:405-415.

Hahn-Hagerdal, B. and N. Pamment. 2004. Microbial pentose metabolism. Appl. Biochem. Biotechnol. 113-116:1207-1209.

Hahn-Hagerdal, B., M. Galbe, M. F. Gorwa-Grauslund, G. Liden, and G. Zacchi (2006) Bio-ethanol—The fuel of tomorrow from the residues of today. Trends Biotechnol. 24: 549-556.

Hughes, S. R., R. E. Hector, J. O. Rich, N. Qureshi, K. M. Bischoff, B. S. Dien, B. C. Saha, S. Liu, E. J. Cox, J. S. Jackson, Jr., D. E. Sterner, T. R. Butt, J. LaBaer, and M. A. Cotta. 2009a. Automated yeast mating protocol using open reading frames from Saccharomyces cerevi — siae genome to improve yeast strains for cellulosic ethanol production. J. Assoc. Lab. Autom. 14(4): 190-199.

Hughes, S. R., J. O. Rich, K. M. Bischoff, R. E. Hector, N. Qureshi, B. C. Saha, B. S. Dien, S. Liu, J. S. Jackson, D. E. Sterner, T. R. Butt, J. LaBaer, and M. A. Cotta. 2009b. Automated yeast transformation protocol to engineer Saccharomyces cerevisiae strains for cellulosic ethanol production with open reading frames that express proteins binding to xylose isom — erase identified using robotic two-hybrid screen. J. Assoc. Lab. Autom. 14(4):200-212.

Ingram, L. O., T. Convey, D. P. Clark, G. W. Sewell, and J. F. Preston. 1987. Genetic engineer­ing for ethanol production in Escherichia coli. Appl. Environ. Microbiol. 53:2420-2425.

Lynd, L., W. H.V Zyl, J. E. McBride, and M. Laser. 2005. Consolidated bioprocessing of cellulosic biomass: An update. Curr. Opin. Biotechnol. 16:577-583.

Mohaghegi, A., N. Dowe, D. Schell, Y. C. Chou, C. Eddy, and M. Zhang. 2004. Performance of a newly developed integrant of Zymomonas mobilis for ethanol production on corn stover hydrolysate. Biotechnol. Lett. 26:321-325.

Nichols, N. N., L. N. Sharma, R. A. Mowery, C. K. Chambliss, P. G. van Walsum, B. S. Dien, and L. B. Iten. 2008 . Fungal metabolism of fermentation inhibitors present in corn stover dilute acid hydrolysate. Enzyme Microb. Technol. 42:624-630.

Nigam, J. N. 2001. Ethanol production from wheat straw hemicelluloses hydrolysate by Pichia stipitis. J. Biotechnol. 87:17-27.

Qureshi, N. 2009 . Solvent production. In: Encyclopedia of Microbiology, edited by M. Schaechter, pp. 512-528. Oxford: Elsevier Ltd.

Qureshi, N. and T. C. Ezeji. 2008. Butanol “A superior biofuel” production from agri­cultural residues (renewable biomass): Recent progress in technology. Biofuels, Bioprod. & Biorefining 2(4):319-330.

Qureshi, N. and G. J. Manderson. 1995. Bioconversion of renewable resources into ethanol: An economic evaluation of selected hydrolysis, fermentation and membrane technologies.

Energy Sources 17:241-265

Qureshi, N., B. Dien, N. N. Nichols, B. C. Saha, and M. A. Cotta. 2006. Genetically engineered Escherichia coli for ethanol production from xylose: Substrate and product inhibition and kinetic parameters. Trans IChemE (Chem. Eng. Res. & Design) 84(C2): 114-122.

Sedlak, M. and N. W. Ho. 2004. Production of ethanol from cellulosic biomass hydrolysates using genetically engineered Saccharomyces cerevisiae yeast capable of cofermenting glucose and xylose. Appl. Biochem. Biotechnol. 113-116:403-416.

Slininger, P. J., S. W. Gorsich, and Z. L. Liu. 2009. Culture nutrition and physiology impact the inhibitor tolerance of the yeast Pichia stipitis NRRL Y-7124. Biotechnol. Bioeng. 102:778-790.

Tran, A. V and R. P. Chambers. 1985. Red oak wood derived inhibitors in the ethanol fermentation of xylose by Pichia stipitis CBS 5776. Biotechnol. Lett. 7:841-846.

Wang, B., T. C. Ezeji, Z. Shi, H. Feng, and H. P. Blaschek. 2009. Pretreament and conversion of distiller’s dried grains with soluble for acetone-butanol-ethanol (ABE) production.

Trans. Am. Soc. Agri. Biol. Eng. 52:885-892.