Surface functionalization of C-MEMS

There are several factors regulating the lifetime of biofuel cells, which has always been a concern for their practical application. In most cases, the stability of enzyme determines the lifetime of biofuel cells. Immobilization of enzyme through covalent bonding on solid surface has attracted great attention for applications in catalytic processes. Therefore, in our research, covalent attachment of enzyme on supports was studied to promote rigidification of enzyme structure of the immobilized enzyme.

We have studied three different types of covalent surface functionalization for enzyme immobilization in EBFCs — (1) Direct amination; (2) Diazonium grafting; (3) Diamine grafting. In all these methods, the functional groups are realized on the pyrolyzed carbon surface.

2.2 Direct amination on pyrolyzed carbon

Подпись: Binding En ergy [eV] image253

Direct amination was conducted by functionalizing its surface with ultraviolet (UV) irradiation under ammonia gas (Yang et, al., 2009). Quantified amino groups on the carbon surface were estimated by X-ray photoelectron spectroscopy in Fig. 3. It is found out that the amino

Fig. 3. X-ray photoelectron spectra of pyrolyzed carbon surface. (a) High-resolution scan of the C 1s peak and (b) high-resolution scan of the N 1s peak are compared before and after direct amination.

groups exist at surface by amination processes due to the high density of carbon. Ammonia gas forms as C-NH2 on carbon substrate because C-H bonds react easily with ammonia gas and undergo photochemical reaction on exposure to UV irradiation although steric limitations will limit the amine group coverage on the surface. The results showed that the amino groups were successfully formed on pyrolyzed carbon surface by direct amination.