Miniature biofuel cells

Miniature power systems using biocatalysts have received increased attention associated with demand for micro-scale power supplies for implantable medical devices. Development of miniature biofuel cells offers a great opportunity to serve as long-term power sources in implantable device where frequent replacement of battery is not practical. The ability of biocatalyst in converting available indigenous fuels into electrical energy makes miniature biofuel cells attractive to enable long-term and self-sustained power system. The success of medical implants is akin with the effective miniaturization of power sources. This can be achieved by miniaturization of different functional components such as electrodes, power supply, and signal processing units. Some of the effective techniques for miniaturization involve fabricating microfluidic systems using photolithography, etching, polymer molding, and metal deposition (Kim et al., 2008). For example, Siu and Chiao (Siu & Chiao, 2008) applied photolithography and polymer molding to fabricate polydimethylsiloxane (PDMS) electrodes. It was also used by Hou et al. (Hou et al., 2009) to fabricate gold electrode arrays for the microbe screening. Besides polymer molding, etching can also be used to transfer micro-patterns onto device-building substrate. Chiao (Chiao et al., 2006) applied wet etching to construct silicon-based chambers containing serpentine channels. Additionally, C-MEMS microfabrication technique for 3D microstrustures, involving the pyrolysis of patterned photoresist has been developed which can be used as microelectrodes for miniature biofuel cells (Wang & Madou, 2006). With current microfabrication processes, the miniature biofuel cells offer unique advantages such as large surface area to volume ratio, short distance between the electrode, fast response time and low Reynolds number. In the following section, we will discuss the developments of both miniature MFCs and EBFCs. The experimental demonstration of miniature biofuel cells, along with the discussion of the key challenges and opportunities for realizing the practical potential of miniaturized biofuel cells for medical implants will be discussed.