History

The earliest discovery between biology and electrical energy was demonstrated by Galvani in 1791 showing the frog leg twitching from an electric current (Galvani, 1791). The first fuel

cell, which involved electrolysis of water, was discovered by Grove in 1839. An electrical stimulation can induce a biological reaction and vice-versa a biological process can also generate electricity. The first half-cell using microorganism (E. coli) was demonstrated by Potter at University of Durham (Potter, 1910). Further development of half-cell by Cohen from University of Cambridge led to one of the major types of biofuel cells, i. e., microbial fuel cells. Cohen applied a number of microbial half-cells connected in series, which generated over 35 volts (Cohen, 1931). In the late 1950s and early 1960s, the interest in development of biofuel cells received a boost by the USA space program, which led to the application of microbial fuel cells as an advanced technology for waste disposal treatment in space flights. Also, in the late 1960s, a biofuel cell using cell-free enzyme systems was discovered aiming to permanently power medical implants by utilizing specific body fluids as fuel (Yahiro et al., 1964). The concept of using microorganism as a biocatalyst in microbial fuel cells was widely applied since the 1970s (Suzuki, 1976 and Roller et al., 1984) and in the 1980s it was found out that power output could be greatly improved by using electron mediators (Vega & Fernandez, 1987; Habermann & Pommer, 1991 and Allen & Bennetto, 1993). However, the toxicity and instability of mediators limited the cell performance. A breakthrough was made when some microorganisms were found to transfer electrons directly to the electrode which led to the mediator-less microbial fuel cells first used in wastewater treatment and electricity generation (Kim et al., 1999; Chaudhuri & Lovley, 2003). These microorganisms are stable and yield a high Coulombic efficiency which facilitates the direct electron transfer (Scholz & Schroder, 2003). Shewanella putrefaciens (Kim et al., 2002), Geobacteraceae sulferreducens (Bond & Lovley, 2003), Geobacter metallireducens (Min et al., 2005) and Rhodoferax ferrireducens (Chaudhuri & Lovley, 2003) are all bioelectrochemically active microbes and can transfer electrons directly through the membrane. On the other hand, since the first enzymatic biofuel cell was reported in 1964, noticeable developments have been made in the terms of the power density, cell lifetime, operational stability (Bockris & Srinivasan, 1969; Govil & Saran, 1982 and Palmore & Whitesides, 1994). However, the output potential generated from enzymatic biofuel cells was still far beyond the demand of commercial application. Therefore, instead of considering enzymatic biofuel cells as a conventional power source, most of the researches on enzymatic biofuel cells have been aimed toward special applications such as implantable medical devices (Katz & Willner, 2003; Barton et al., 2004 and Heller, 2004). In the past ten years, cell performances on both types of biofuel cells have been improved significantly and we will discuss the detailed development in the following sessions.