Pretreatments

These are used to modify the structure and dimensions of macroscopic and microscopic raw materials, and also their chemical composition. They have the effect of solubilizing the hemicellulose, reducing the crystallinity, and increasing the available surface area and porosity of the substrate. An effective pretreatment must meet following requirements: — it must increase sugar formation or facilitate the subsequent formation of sugars during hydrolysis, preventing any degradation or the loss of carbohydrates, and avoiding the formation of byproducts capable of inhibiting the subsequent processes of hydrolysis and fermentation, all at a competitive cost (Balat et al., 2008).

Pretreatments are particularly essential before enzymatic hydrolysis and may be of various types, i. e. physical, chemical, biological, steam explosion, and ammonia fiber explosion (AFEX).

Physical pretreatments may or may not be mechanical. The mechanical physical pretreatments include milling and grinding, that not only reduce the substrate, but also increase its surface area to volume ratio, thus making the cellulose easier to convert during hydrolysis. "Ball milling" could also be used to reduce the crystallinity of the cellulose, but this practice is not only very expensive, but also takes a long time (nearly a week) to complete, so it is hardly practicable on an industrial scale. The non-mechanical pretreatments feature a combination of high-power internal and external forces that decompose the lignocellulose.

Chemical pretreatments are used mainly to reduce the crystalline content of the cellulose. Using this type of pretreatment poses plant-related problems, however, since all the structural materials have to be capable of withstanding the severe working conditions imposed by the chemical agents.

The chemical pretreatments most often used are an alkaline treatment to delignify and solubilize the glycan, and an NaOH treatment that dissolves the lignocellulose biomass, destroying its lignin structure. Pretreatment with diluted sulfuric acid is also very important but this poses serious problems if it is associated with diluted acid hydrolysis, because the hydrolyzed end products become scarcely fermentable.

Other chemical pretreatments include: pretreatment with hydrogen peroxide (H2O2), which exploits oxidative delignification to separate and solubilize the lignin, and dissolve the lignocellulose matrices, thereby increasing the enzymatic digestibility of the mass; pretreatment with ozone, which degrades the lignin polymers; and pretreatment with liquid hot water (LHW), which is applied mainly to alfalfa. It was demonstrated (Laser et al., 2002) that, in ideal conditions, this method is as effective as diluted acid hydrolysis, without the need to use any acid or create any products of neutralization).

Biological pretreatments involve the use of enzymes, which are already useful in industrial processes on timber waste, in the processing of pulp and scraps. Several microorganisms studied years ago are the enzymes produced by the basidiomycetes Pleurotus ostreatus: these enzymes are homologous proteins characterized by different specifications, depending on which phenols are substituted. Another fungus in the basidiomycetes class that is effective in delignification is the Phanerochaete chrysosporium (Palmieri et al., 1997).

image358 Подпись: (1)

In the steam explosion process, saturated steam is used at very high temperatures and pressures to break up the chemical bonds in the cellulose, hemicellulose and lignin in order to break down the fibers and hydrolyze the biomass. The process consists in delivering steam under high pressure into a sealed chamber containing the lignocellulose material, then reducing the pressure and thus making the steam and matrix expand, and obtaining its explosive decompression through an orifice, which disrupts the cellular structure of the substrate, breaking up the acetyl groups of the hemicellulose. In some cases (e. g. Angiosperm), it is preferable to use acid catalysts, such as H2SO2 or SO2, to make the cellulose-rich components more accessible to the enzymes. SO2 gas is better able to attack the fibers (Shevchenko et al., 2000), but its use makes it necessary to carefully consider the working conditions in which the steam explosion takes place. In fact, it becomes necessary to find the best compromise between a strong enzymatic hydrolysis (obtainable in very severe conditions) and a good recovery of the components containing hemicellulose, that are in the form of monomeric sugars (which demand much less severe conditions) (Silverstein et al., 2007). That is why a severity indicator has been developed (Overend & Chornet, 1987), which correlates pretreatment temperatures and times, assuming that the pretreatment obeys Arrhenius’s equation and has first-order kinetics. The indicator R0 is:

Подпись: Mo =t■ Cn ■exp Подпись: Ti—h.) 14.75 ) Подпись: (2)

where t is the duration of the pretreatment (min), Tr is the reaction temperature (°C), Tb is the baseline temperature (100°C) and the constant 14.75 is the conventional activation energy, assuming that the whole conversion is of the first order. If the version with sulfuric acid is being used, then the severity parameter, called M0 in this case, is slightly modified:

where C is the chemical concentration (wt%) and n is an arbitrary constant (Chum et al., 1990).

Ammonia fiber/freeze explosion (AFEX) pretreatment involves the use of liquid ammonia and steam explosion: in this process, the previously-humidified lignocellulose material is placed in a vessel under pressure with liquid NH3 in proportions of 1-2 kg NH3/kg of dried biomass. This method is very effective for non-woody materials such as bagasse and newspaper, but less so in the case of "soft" wooden materials. This system does not release any sugars directly, but it does make the polymers (hemicellulose and cellulose) easier for the enzymes to attack. The ammonia can also be replaced with carbon dioxide because the latter is relatively less costly and also because the alcohol waste product contains traces of pollutants that would thus derive only from the lignin.

The most promising pretreatments for farming waste are AFEX and LHW, while pretreatment with steam affords a high output of sugars from both farming waste and forest waste.