A case study on a greenhouse facility due to LCA methodology

Next, we propose the advanced greenhouse system for paprika cultivation with the combined biomass gasification process of BT with SOFC (Solid Oxide Fuel Cell). The BT gasifier which is a biomass gasification process has a characteristic of generating hydrogen gas of high concentration in syngas. Here, we considered the acceptability for the related facilities in agriculture field. Because the environmentally friendly system such as a PV system or a fuel cell co-generation system is still not enough to be promoted for those facilities. That is, there would be potential to combine the biomass energy system which is environmentally friendly with the agriculture related facilities. In addition, MAFF contribute to the global warming protection through the carbon-footprint of agricultural products. The ministry has a few subsidy menus on the promotion of the system. Also, on the surplus energy of electricity and/or thermal energy, there are institutions by which the energy companies are obliged to purchase them with additional fees.

Using the above institutions and/or subsidy menus under the leadership of the Japanese government, we considered the following concrete paprika harvesting system in which the biomass gasification (BT) process with SOFC is assumed to be introduced (Dowaki et al., 2010b).

First, our model site is the paprika harvesting facility in Miyagi of Japan, whose area is 4.6 ha. In our study, through interviews from the owner company, we used the data of not only the energy consumption of electricity and oil, but also the supply of CO2 gas which is fed into the greenhouse as a growth promoting agent. That is, in the model we proposed, the electricity, the thermal energy and the CO2 gas which is included in exhausted gas through BT plant are assumed to be available for the greenhouse facility of paprika harvesting. In addition, due to the combination of the advanced power generation such as SOFC, additional benefit of CO2 emission reduction would be obtained. This may be advantageous from the profit aspect since the surplus electricity would be able to be sold to the commercial energy companies. Also, from the viewpoint of thermal energy use, the combined BT with SOFC units would be advantageous since the exhausted gas with a high temperature (ca.700 °C) is generated. Although the operation of SOFC has been in a developmental stage, we used the published parameters. The initial cost of SOFC unit seems to be costly in comparison to the conventional power system. However, it is said that the commercial stage of SOFC is close. Thus, the initial cost was assumed to be equivalent to the target price as of 2015. The thermal energy for the greenhouse is supplied by the heat pump equipment. This would bring to the benefit of cost and/or CO2 emission reduction, since there is little waste thermal energy (Dowaki et al., 2011c).

On the other hand, MAFF tries to introduce the carbon-footprint for the agricultural products. It is difficult to estimate the monetary values of CO2 emissions of agricultural products. For instance, Kikuchi et al. investigated the willingness to pay for CO2 emission reduction of vegetables (Kikuchi and Itsubo, 2009). They found out that the consumers have a willingness to pay for an additional cost of approximately 5% up against a conventional price. Although this is only a limited effect, there would be a potential to earn income due to the carbon footprint. That is, with regard to income in our system, revenues to the plant owner would include the related subsidy, the processing fee of waste material, the sale of surplus electricity and the paprika sale with low CO2 emission. The carbon-footprint of agricultural product might be important one of income sources.

In this study, we analysed the CO2 emission due to LCA methodology.