Microfluidic BFCs with soluble enzymes

1.2.1.1 Strategies to limit the cross-diffusional mixing

In order to restrict fuel and oxidant mixing to a thin interfacial width Smix sufficiently far from the electrodes (see Fig. 3), the flow rate should be increased to an optimal value to provide little to no fuel crossover, while yielding high reactants consumption (Lee et al., 2007), and besides, the electrodes must have sufficient separation distance within the microchannel (Kjeang et al., 2009). Generally, to confirm that the diffusive crossover doesn’t contribute to the loss of current, the width of the mixed region Smix is calculated using Eq. 6. (Zebda et al., 2009b). Another strategy to prevent the direct contact and the reaction between oxidant and fuel was proposed in the case of a microfluidic fuel cell working from formic acid as fuel (Sun et al., 2007). A three-stream laminar flow fuel cell was developed that consisted to introduce a third stream containing only electrolyte solution between fuel and oxidant streams.