Manufacturing technology

1.1.1 Fabrication of the microchannel

Microchannel architecture typically represents a T — or Y-channel configuration. There are mainly two fabrication techniques. The first one utilizes conventional chip-manufacturing techniques of semiconductor industries. Silicon wafers are patterned by lithography step followed by etched step in order to get the desired form of the channel (Moore et al., 2005; Lee et al., 2007). The second technique allows the fabrication of microchannels by rapid prototyping using standard soft lithography procedure to build the channel in poly(dimethylsiloxane) (PDMS) (Duffy et al., 1998). PDMS is relatively inert and compatible with most solvents and electrolytes (Kjeang et al., 2008). Besides it is permeable to gases, which is essential for biofuel cells working from enzymes with oxygen as the cofactor. Typically, a pretreated microscope glass slide or a silicon wafer is coated with a thin layer of photoresist by spin-coating and exposed directly to UV light through a photomask that defines the desired channel structure. Several thick photoresist layers are sequentially laminated on the first layer
to get the desired channel depth, and then exposed to UV light. The structure is then developed by spraying an aqueous solution of sodium carbonate (1 % wt) and hardened by a final irradiation. The result is a master with a positive pattern defined by the master. The channel structure is thus obtained by pouring PDMS monomer over the master, followed by curing at 70 °C during 2 h. After cooling, the PDMS slab is peeled off from the master, and holes are punched to provide fluid access (Stephan et al., 2007).