The most common raw materials

Energy crops are those developed only for fuel. These crops include fast growing trees, shrubs and grasses. These can be grown in agricultural land not needed neither for food, nor pasture nor fibers. In addition, farmers can grow energy crops along the banks of rivers, around lakes or in farms areas including, natural forests or swamps, for creating habitat for wildlife, renewing and improving soil biodiversity. Trees can be grown for a decade and then being cut down for energy.

Thus, bioenergy covers all forms of energy derived from organic fuels (biofuels) form biological origin used for producing energy. It includes both crops intended to produce energy which are particularly grown and multipurpose crops and by-products (residues and wastes). The term By-products includes solid, liquid and gaseous byproducts derived from human activities. It can be considered biomass as a sort of converted solar energy.

It can be said that biodiesel production tends to come mainly from oils extracted from oilseeds plants, but any material containing triglycerides can be used for biodiesel production (sunflower, rapeseed, soybean, oil palm, castor oil, used cooking oils, animal fat). Here are the main raw materials for biodiesel production (Mesa, 2006).

Conventional vegetable oils: raw materials traditionally used for biodiesel production have been: oils from oilseeds such as sunflower and rapeseed (in Europe), soybeans (in The United States) and coconut (in The Philippines), and oils from oilseeds fruits such as oil palm (in Malaysia, Indonesia and Colombia).

Alternative vegetable oils: in addition to traditional vegetable oils, there are other species adapted to the conditions from the country where they are developed and better positioned within the field of energy crops: Jatropha curcas oil (Ministerio de Minas y Energia, 2007). Biofuels have become very important because of the variety of crops from which they can be derived, but this energy supply demands a high production of them. This would have harmful effects because of the destruction of forests and jungles and replacement of crops that are essential to human diet; besides the drawbacks shown in the following fields: climatic, geographical and physical. The main supply sources of raw materials for biofuels production are shown in Table 1 and Figures 2, 3 and 4.

Crop

Efficiency (l/ha/year)

Efficiency (ton/ ha)

Estimated barrel price (US $)

Sugar Cane

9

100

45

Cassava

4,5

25

NA

Sugar Beet

5,000

NA

100

sweet sorghum

1,189

NA

NA

Cellulose

NA

NA

305

Maize

3,2

10

83

Oil palm

5,55

NA

NA

Coconut

4,2

NA

NA

Castor oil

2,6

NA

NA

Avocado

2,46

NA

NA

Jatropha

1,559

NA

43

Rapeseed

1,1

NA

NA

Peanut

990

NA

NA

Soybeans

840

NA

122

Rapeseed

NA

NA

125

Wheat

NA

NA

125

Sunflower

890

NA

NA

Oil

NA

NA

70-80

Table 1. Raw materials for biofuel production: Source: Ministerio de Agricultura y Desarrollo Rural, MADR (English: Ministry of Agriculture and Rural Development); Portafolio: Goldaman Sachs (2007)

But not all the questions are clear and therefore the UN declares: if growing fields for biofuels production increase disproportionately, food and the environment could be at risk. Increased logging. Also food prices could increase.

For major producing countries, costs of ethanol production range between 32 and 87 USD/barrel (International Energy Agency, 2006). According to the available information, about 47% and 58% of this cost is raw materials, about 13% and 24% for inputs, about 6% and 18% for operation and maintenance costs and, about 11% and 23% to capital costs. It can be said that production costs widely vary between countries due to agro-climatic factors, land availability and labor cost that affect the kind of biomass used as raw material; this factor affects transformation technologies selection.

Figure 2 shows sources of raw materials sources for alcohol and biodiesel production and the corresponding efficiency. Figure 3 and 4 show ethanol efficiency from biomass sources in countries outstanding in their production. There is higher ethanol efficiency from sugar beet, in comparison with sugar cane and corn.

For every ton of cassava, 200 liters of ethanol can be obtained, when making the cassava calculations as a yield base of 25 ton/ha it can be obtained a yield of 5000 liters/ha can be obtained which is lower in comparison to sugar beet but higher compared to corn and sugar cane. With fertilization programs and cassava crops mechanization, yields can be increased to values of 70 ton/ha, which will triple cassava yield in liters/ha (Altin et al., 2001 ). Another important factor is that biofuels do not work as well as petroleum fuels. In order to increase their production most of the fertile lands would have to be assigned for farming them, which could be counterproductive in a world where hungry and desertification are two problems with difficult solution.

image196

Source: Ministerio de Minas y Energia (English: Ministry of Mines and Energy), based on Goldman Sachs and LMC

image197

Fig. 3. Ethanol yields from biomass (Source: FAO, 2007)

 

Fig. 4. Ethanol yields in liters per Tone of Feedstock. (Source: FAO, 2007)