Fuel pellet quality parameters

The quality of fuel pellet is usually assessed based on its density and durability. High density of pellet represents higher energy per unit volume of material, while durability is the resistance of pellets to withstand various shear and impact forces applied during handling and transportation. High bulk density increases storage and transport capacity of pellets. Since feeding of boilers and gasifiers generally is volume-dependent, variations in bulk density should be avoided (Larsson et al., 2008). A bulk density of 650 kg/ m3 is stated as design value for wood pellet producers (Obernberger and Thek, 2004). Low durability of pellets results in problems like disturbance within pellet feeding systems, dust emissions, and an increased risk of fire and explosions during pellet handling and storage (Temmerman et al., 2006). Other quality factors of biomass for thermo-chemical conversion include (FAO, 2011; Rajvanshi, 1986):

• Energy content: The choice of a biomass for energy conversion will in part be decided by its heating value. The method of measurement of the biomass energy content will influence the estimate of efficiency of a given gasifier. The only realistic way of presenting fuel heating values for gasification purposes is to give lower heating values (excluding the heat of condensation of the water produced) on an ash inclusive basis and with specific reference to the actual moisture content of the fuel.

• Moisture content: High moisture contents reduce the thermal efficiency since heat is used to drive off the water and consequently this energy is not available for the reduction reactions and for converting thermal energy into chemical bound energy in the gas. Therefore, high moisture contents result in low gas heating values during thermo­chemical processes.

• Volatile matter: The amount of volatiles in the feedstock determines the necessity of special measures (either in design of the gasifier or in the layout of the gas cleanup train) in order to remove tars from the product gas in engine applications.

• Ash content and slagging characteristics: The mineral content in the biomass that remains in oxidation form after complete combustion is usually called ash. The ash content of a fuel and the ash composition have a major impact on trouble free operation of a gasifier or a burner. Slagging or clinker formation in the reactor, caused by melting and agglomeration of ashes, at the best will greatly add to the amount of labour required to operate the gasifier. If no special measures are taken, slagging can lead to excessive tar formation and/or complete blocking of the reactor.

• Reactivity: The reactivity is an important factor determining the rate of reduction of carbon dioxide to carbon monoxide in a gasifier. Reactivity depends in the first instance on the type of fuel. For example, it has been observed that fuels such as wood, charcoal and peat are far more reactive than coal.

• Size and size distribution: Low bulk density feedstock may cause flow problems in the gasifier or burner as well as an inadmissible pressure drop over the reduction zone and a high proportion of dust in the gas. Large pressure drops will lead to reduction of the gas load, resulting in low temperatures and tar production. Excessively large sizes of particles or pieces give rise to reduction in reactivity of the fuel, resulting in start-up problems and poor gas quality, and to transport problems through the equipment. A large range in size distribution of the feedstock will generally aggravate the above phenomena. Too large particle sizes can cause gas channelling problems. Fluidized bed gasifiers are normally able to handle fuels with particle diameters varying between 0.1 and 20 mm (FAO, 2007).

• Bulk density: Fuels with high bulk density are advantageous because they represent a high energy-for-volume value. Consequently, these fuels need less bunker space for a given refuelling time. Low bulk density fuels sometimes give rise to insufficient flow under gravity, resulting in low gas heating values and ultimately in burning of the char in the reduction zone. Inadequate bulk densities can be improved by briquetting or pelletizing. All of the abovementioned biomass properties could be altered by subjecting raw biomass to various processing methods and forming composites. Before choosing a gasifier, it is important to ensure that the individual biomass meets the requirements of the gasifier or that it can be treated to meet these requirements.