Hammer mill grinding

Typically, hammer mills are used in forage processing industry as they are relatively inexpensive, easy to operate and produces wide range of particles (Lopo, 2002). Hammer mills have achieved merit because of their ability to finely grind a greater variety of materials than any other machines (Scholten et al., 1985). The performance of a hammer mill is measured in terms of energy consumption and geometric mean diameter and particle size distribution of the ground product (Adapa et al., 2011a; Mani et al., 2004).

Screen Size: Hammer mill screen opening size was the most significant factor affecting mill performance (Fang et al., 1997) and also has significant effect on mean particle size (Pfost and Headley, 1971). The specific energy required to grind agricultural biomass significantly increases with a decrease in hammer mill screen size and shows a negative power correlation (Arthur et al., 1982; Soucek et al., 2003). Similarly, Adapa et al. (2011a) reported negative correlation between specific energy and particle size of biomass as affected by hammer mill screen sizes. However, two other studies reported a second-order polynomial relationship between the specific energy requirements for grinding biomass (Mani et al. 2004; Sitkei, 1986). Usually, the mean geometric particle size for any particular biomass decreases with a decrease in hammer mill screen size (Adapa et al., 2011a). It has been reported that wider particle size distribution is suitable for compaction (pelleting/ briquetting) process (Adapa et al., 2011a; Mani et al., 2004). During compaction, smaller (fine) particles rearrange and fill in the void space of larger (coarse) particles producing denser and durable compacts (Tabil, 1996).

Operating Speed (Peripheral Velocity): The speed has a significant effect on mean particle size (Pfost and Headley, 1971). The total specific energy of hammer mill grinding has direct correlation to an increase in hammer tip speed (Bitra et al., 2009; Vigneault et al., 1992). High speed hammer mills with smaller diameter rotors are good for fine or hard-to-grind material. However, at high tip speeds, the material moves around the mill parallel to the screen surface making the openings only partially effective. At slower speeds, the material impinges on the screen at a greater angle causing greater amounts of coarser feed to pass through (Balk, 1964).

Hammer Angles and Thickness: The direct energy input for grinding also depends on hammer angles. In general, the specific energy for grinding decreases with an increase in hammer degrees (Bitra et al., 2009). In addition, the specific energy for grinding increases with an increase in hammer thickness (Vigneault et al., 1992).

Material Moisture Content and Feed Rate: A positive correlation has been reported between moisture content and specific energy consumption for grinding of agricultural biomass (Balk, 1964; Mani et al., 2004; Soucek et al., 2003). Feeding rate also has significant effect on specific energy consumption during hammer mill grinding and has positive correlation (O’Dogherty, 1982).

Bulk and Particle Densities, and Geometric Mean Particle Size: Usually, the bulk and particle density of agricultural straw significantly increases with a decrease in hammer mill screen size (Adapa et al., 2011a). The geometric mean particle size of pre-treated straw is usually smaller than that of the non-treated straw. This could be due to the fact that application of pre-treatment disrupts/ disintegrates the lignocellulosic structure of the biomass (Sokhansanj et al., 2005) leading to lower shear strength (easier to grind the straw).