Chemical pre-treatment

Different chemicals such as acids, alkalis, oxidizing agents and ozone have been used for chemical pre-treatment of lignocellulosic materials. Depending on the type of chemical used, pre-treatment could have different effects on structural components. Alkaline pre-treatment, ozonolysis, peroxide and wet oxidation pre-treatments were reportedly more effective in lignin removal, whereas dilute acid pre-treatment was more efficient in hemicellulose solubilization (Galbe and Zacchi, 2002; Sanchez and Cardona, 2008; Tomas-Pejo et al., 2008). Acid Hydrolysis: Inorganic acids such as H2SO4 and HCl have been used for pre-treatment of lignocellulosic materials and have been used on a wide range of feedstocks ranging from hardwoods to grasses and agricultural residues. Acid hydrolysis can be classified as concentrated or dilute-acid hydrolysis based on the dose of acid used in the process. In the first case, the biomass is treated with high concentration of acids at ambient temperatures, which results in high conversion of lignocellulosic materials. Although concentrated acids are powerful agents for cellulose hydrolysis, they are toxic, corrosive, hazardous, and thus require reactors that are resistant to corrosion, making the pre-treatment process very expensive. In addition, the concentrated acid must be recovered after hydrolysis to make the process economically feasible (Galbe and Zacchi, 2002; Sun and Cheng, 2002).

Dilute-acid hydrolysis has been successfully developed for pre-treatment of lignocellulosic materials. Sulfuric acid at concentrations usually below 4% (wt) has been of the most interest in such studies as it is inexpensive and effective. Dilute H2SO4 pre-treatment can achieve high reaction rates and significantly improve cellulose hydrolysis (Esteghlalian et al., 1997). High temperature is favorable to attain acceptable rates of cellulose conversion. Despite low acid concentration and short reaction time, the use of high temperatures in dilute-acid hydrolysis accelerates the rate of hemicellulose sugar decomposition and increases equipment corrosion (Galbe and Zacchi, 2002; Taherzadeh and Karimi, 2007).

Alkali hydrolysis: Dilute alkali such as sodium, potassium, calcium, and ammonium hydroxides have been used for pre-treatment of lignocellulosic materials in alkali hydrolysis. The effectiveness of these agents depends on the lignin content of the materials. Temperature and pressure are lower in alkali pre-treatment compared with other pre­treatment methods (Mosier et al., 2005). Alkali pre-treatment can be conducted at ambient conditions, but process time is longer (hours or days instead of minutes or seconds). Compared with acid process, alkaline process causes less sugar degradation, and many of the caustic salts can be recovered and/or regenerated.

Sodium hydroxide has been studied more than other agents (Soto et al., 1994; Fox et al., 1989; MacDonald et al., 1983). Treatment of lignocellulosic materials using dilute NaOH results in swelling, leading to an increase in internal surface area, a decrease in the degree of polymerization, a decrease in crystallinity, separation of structural linkages between lignin and carbohydrates, and disruption of the lignin structure. However, calcium hydroxide (lime) is the least expensive hydroxide and has been shown to be an effective pre-treatment agent. The process of lime pre-treatment involves slurrying the lime with water, spraying it onto the biomass material, and storing the material in a pile for a period of hours to weeks. The particle size of the biomass is typically 10 mm or less. Elevated temperatures reduce contact time.

Oxidizing agents: In this pre-treatment, an oxidizing compound such as hydrogen peroxide (H2O2) or peracetic acid (CH3CO3H) is used to treat lignocellulosic materials and sometimes is applied in combination of an alkaline solution (e. g. NaOH) to improve effectiveness. This pre-treatment is usually carried out under mild temperature. This pre-treatment is more effective to increase crop residue digestibility compared with NaOH pre-treatment alone. Gould (1984) delignified agricultural residues using 1% H2O2 at 25°C for 18-24 h. Under this condition, more than half of the lignin and most of hemicellulose were solubilized. The pre­treatment of cane bagasse with H2O2 greatly enhanced its susceptibility to further hydrolysis. About 50% of the lignin and most of the hemicellulose were solubilized by 2% H2O2 at 30°C within 8 h, and a 95% efficiency of glucose production from cellulose was achieved in the subsequent saccharification by cellulase at 45°C for 24 h (Azzam, 1989). Ozonolysis: In this process, ozone is used to change the structure of lignocellulosic materials and has been used for different materials such as wheat straw (Ben-Ghedalia and Miron, 1981), bagasse, green hay, peanut, pine ( Neely, 1984), cotton straw (Ben-Ghedalia and Shefet, 1983) and poplar sawdust (Vidal and Molinier, 1988). Ozonolysis is carried out at room temperature and normal pressure. It can effectively remove the lignin without producing any toxic residues. In this process, hemicellulose is slightly affected, but no change in cellulose has been reported. The main restriction of this process is the large amount of ozone utilization that makes the process expensive (Sun and Cheng, 2002). Binder et al. (1980) reported 60% removal of the lignin from wheat straw using ozone pre­treatment. Enzymatic hydrolysis yield increased from 0% to 57% as the percentage of lignin decreased from 29% to 8% after ozonolysis pre-treatment of poplar sawdust (Vidal and Molinier, 1988). Garcia-Cubero et al. (2009) studied the ozonolysis pre-treatment of wheat straw in a fixed bed reactor at room conditions and concluded that enzymatic hydrolysis yield of up to 88.6% compared to 29% in non-ozonated sample.