Results and discussion

2.1 Effect oftemperature on viscosity of bio-oils from different feedstocks

The viscosities of bio-oils produced from different feedstocks were measured at 20, 40, 50, 60, 80, and 100°C and are shown in Fig. 3. In general, the viscosity of bio-oil at 20°C was higher than that of 100°C, irrespective of the feedstocks and with or without catalyst. This observation was in agreement with viscosity of bio-oil from pine wood chips (Thangalazhy — Gopakumar et al., 2010). Bio-oils used in this study had a higher viscosity at lower shear rate and the viscosity decreased exponentially at higher shear rate (>10/s) and similar result was reported for bio-oil from pine wood chips (Thangalazhy-Gopakumar et al., 2010). All the bio-oils used in this study showed non-Newtonian behavior as evident from Fig. 1. As mentioned in the introduction section, viscosity plays an important role in atomization through influencing inertial and aerodynamic instabilities. The Sauter mean diameter (SMD) of spray increases with viscosity for Newtonian fluid, whereas elasticity or shear thinning behavior of non-Newtonian fluid would affect the SMD. Thus, it is important to examine the non-Newtonian or viscoelastic nature of bio-oil since it may exhibit these effects during the application. According to Lu et al (2009b), most of the bio-oils behave as Newtonian fluids at temperatures lower than 80°C, whereas all the bio-oils used in this study even at high temperature (100°C) behaved as non-Newtonian fluid. A prevalent shear thinning behavior was observed at 50 and 80°C by Tzanetakis et al (2008) and similar behaviors were observed for all the bio-oils irrespective of the type of process (batch or continuous),with or without catalyst and kinds of feedstocks.

The viscosity of bio-oil between 20, 40, and 80°C were statistically different for all the feedstocks. Although the viscosities of bio-oil from corn cob were different at 20°C, the differences vanished at 80°C. In general, the viscosity of bio-oils produced from different feedstocks decreased with an increase in temperature. Similar trends were reported for bio­oils produced from different feedstocks such as softwood bark (Boucher et al., 2000a, b), sugarcane bagasse (Garcia-Perez et al., 2002), rice husk (Zhang et al., 2006), switchgrass (Boateng et al., 2007), corn stover (Yu et al., 2007), hardwood (Tzanetakis et al., 2008), pine and oak wood and bark (Ingram et al., 2008), pine wood chips (Thangalazhy-Gopakumar et al., 2010), and rice husk (Ji-Lu & Yong-Pong, 2010). When temperature was increased from 20 to 40°C, viscosity of bio-oil from canola showed a minimum decrease of 9% and bio-oil from corn cob 1 showed a maximum decrease of 25%. A further increase in temperature to 80°C resulted in viscosity decrease of 26 and 52%, respectively, for the bio-oil produced from canola and corn cob 1. Bio-oil derived from hardwood showed a similar behavior; however, the decrease was seven fold (Tzanetakis et al., 2008). The bio-oil viscosity measured at 40°C in this study was ten-fold lower than the viscosity (0.02 Pa. s) of the bio-oil produced from (heterotrophic) microalgae (Miao & Wu, 2004). The viscosity of bio-oils produced from different feedstocks though MAP was lower than the light fuel viscosity of 4 cSt (Mohan et al., 2006), the heavy fuel oil viscosity of 50 cSt (Czernik and Bridgwater, 2004), the US #4 fuel oil viscosity of 5.5-24 cSt (Oasmaa et al., 2009), commercial automotive #2 diesel viscosity of 2-4.5 cSt (Islam et al., 2010), diesel viscosity of 0.011 Pa s (Thangalazhy-Gopakumar et al.,

image105

> 100C ■ 80C 60C «50C «40C

 

20C

 

Canola

 

50 100 150 200 250

> 100C ■ 80C ■ 60C «50C «40C 20C

 

11 Comcobl—і

200 250

 

50

 

100

 

150

 

Fig. 3. Viscosity of bio-oils produced from different feedstocks at indicated temperatures

 

image94image95

2010), and was higher than JP4 viscosity of 0.88 cSt (Chiaramonti et al., 2007) and gasoline viscosity of 0.006 Pa s (Thangalazhy-Gopakumar et al., 2010) at a temperature of 40°C. Considering the viscosity criteria (15 cSt at 35-45°C and 21.5 cSt at 30°C) presented by researchers (Pootakham & Kumar 2010a; Islam et al., 2010) for loading/handling and pipe transportation, the bio-oils from different feedstocks produced through MAP can be easy to load using existing petroleum loading equipments and easy to transport through pipe also. According to ASTM burner fuel standard, the bio-oil can have a maximum viscosity of 125 cSt at 40°C without filtering (Oasmaa et al., 2009). Considering this limit, the viscosity of the bio-oils used in this study had a much low viscosity and these bio-oils can be used as burner fuel.

Czernik and Bridgwater (2004) reported that the viscosity of bio-oil produced from wood would vary between 40 and 100 cP at 50°C, whereas the viscosity of the heavy fuel oil is 180 cP. As evident from Fig. 3, the viscosity of bio-oils produced from different feedstocks through batch or continuous MAP with or without catalyst had a significantly lower viscosity (1.5-2.2 cP) than the viscosity values reported by Czernik and Bridgwater (2004) and the viscosity of bio-oil (33 cP) from hardwood at 50°C (Tzanetakis et al., 2008). The viscosity of bio-oils used in this study was lower than that of bio-oil from sugarcane bagasse (12.1-28 cSt) measured at 60 and 80°C (Das et al., 2004). This result indicates that the bio-oils produced through MAP can be easily atomized. One possible reason for low viscosity of the bio-oils in this study was the absence of agitation and fluidization in MAP resulted in a clearer bio-oil (free from fine char/particles) than that of conventional pyrolysis.