Как выбрать гостиницу для кошек
14 декабря, 2021
Почти половина всей производимой энергии используется для обогрева воздуха (например, в Швейцарии около 46%). Солнце светит и зимой, но это рассеянное и прямое излучение обычно недооценивается.
Декабрьским днем недалеко от Цюриха физик А. Фишер генерировал пар; это было, когда солнце находилось в своей самой низкой точке, а температура воздуха была 3° С. Днем позже солнечный коллектор площадью 0,7 м2 нагрел 30 л холодной воды из садового водопровода до +60° С.
Солнечная энергия зимой может легко использоваться дЛй обогрева воздуха. Весной и осенью, когда часто бывает солнечно, но холодно, солнечный обогрев помещений позволит не включать нефтяное отопление. Это дает возможность сэкономить часть энергии для работы всей системы. Для домов, которыми редко пользуются, или для сезонного жилища (дачи, бунгало, кемпинги), обогрев на солнечной энергии особенно полезен зимой, что исключает чрезмерное охлаждение стен, предотвращая разрушение от конденсации влаги и плесени. Таким образом, ежегодные эксплуатационные расходы в основном снижаются. Чтобы согреть дом зимой, не требуется большой поверхности коллектора, но та же установка снабжает дом горячей водой летом, когда дачи и кемпинги в основном и используются.
Хотя греческий писатель Ксенофонт описал около 2400 лет назад возможное использование солнечной энергии, первые дома, в которых пытались использовать солнечную энергию, были построены только между 1930 и 1945 г. Но первые попытки потерпели неудачу из-за низких теплоизоляционных качеств этих домов: в них было слишком много окон. Эксплуатация «солнечного дома» MJT 1 (рис. 23), построенного в 1939 г., дала интересные результаты (Массачусетский технологический институт, X. С. Хоттел, Б. Б. Воертс). Это экспериментальное здание площадью примерно 46 м2 с солнечными коллекторами площадью 37 м2, установленными на* солнечной стороне крыши под углом 30°. Коллекторы работают на воде, поглощающие поверхности и трубы из меди, остекление тройное, аккумуляторы — на 62 тыс. л воды, которая к концу лета нагревалась до 75° С. Горячая вода нагревала воздух в помещении. Этот дом определил первые проблемы, связанные с использованием солнечного обогревания, например: течь водяных баков, поломка коллекторов при термальном расширении, недостаточное утепление и дороговизна секций накопительных аккумуляторов. На рис. 24, 29, 30 показаны системы других отопительных систем на воде.
В этот период уже были обоснованы основные составные части солнечной отопительной установки: солнечный коллектор
(водяного или воздушного типа, концентрирующий или нет); теплоноситель для аккумулятора (вода, камень, бетон или химические материалы, сохраняющие тепло); теплоноситель для отопления помещений (вода, воздух или химикалии); нагревательные приборы (радиаторы, трубы, проложенные под полом, и т. п.). В зависимости от требований они могут комбинироваться в различных вариантах. Детально эти компоненты анализируются в гл. 6.
Поиски технически и экономически удовлетворительных решений привели к появлению сотен патентов в разных частях света, многие из них были осуществлены и испробованы. Некоторые из наиболее известных описаны ниже.
|
|
||
Рис. 23. Солнечная отопительная система MIT-1
1 радиация; 2 — водяной солнечный коллектор; 3 — промежуточная зона; 4 — циркуляционный насос; 5 — накопительный бак для горячей воды; 6 — теплый воздух, обогревающий жилое пространство; 7 — канал для возврата воздуха; 8 — жилое пространство; 9 — утеплитель
|
![]() |
Рис. 24. Водяная солнечноотопительная система (основной принцип работы)
1 — радиация; 2 — водяной солнечный коллектор; 3 — горячая вода, направляемая в накопительный бак; 4 — циркуляция нагретой солнцем воды; 5 —накопительный бак для горячей ВОДЫ; 6 — циркуляция воды для отопления; 7 — нагревательный
прибор; 8 — холодная вода; 9 — горячая вода; 10 — ввод холодной воды; 11 — жилое пространство; 12 — подвал
|
5,2,1, Система MJT. Самый первый «солнечный дом», построенный между 1939 и 1959 г., в Массачусетском технологическом институте архитекторами X. С. Хоттелом, Б. Б, Воертсом, А. Г. Диетсом, С. Д. Энгебретсоном, имел водяную отопительную систему, ставшую с тех пор классической (рис. 23). Вода, наполняющая солнечные коллекторы (с одинарным, двойным
и тройным остеклением), поглощала солнечное тепло. Эта теп — — лая вода накачивалась в аккумуляторы, расположенные в подвале. Горячая вода в аккумуляторах нагревала воздух, который нагнетался в жилые помещения.
Типичный пример системы МЛ дает «солнечный дом» № 3 (архитекторы, X. С. Хоттел и С. Д. Энгебретсон, 1949 г.). Экспериментальное здание одноэтажное, однокомнатное. Площадь пола 55,7 м2. Площадь поверхности солнечного коллектора водяного типа 37,2 м2, наклон в южную сторону 57°, двойное остекление, цилиндрические аккумуляторы 91 см в диаметре, 9,1 м высоты, емкостью 6750 л. 30% энергии радиации поступает в аккумуляторы. В среднем 90% всех потребностей в отоплении дома удовлетворялись за счет солнечной энергии (в самые холодные месяцы 75—85%). Энергетическая автономия здания (независимость от внешних источников энергии) составляет два дня.
5.2.2. Система Телкеса—Раймонда. В этой системе были впервые установлены в 1948 г. солнечные коллекторы воздушного типаі с аккумуляторами, использующими глауберову соль (Na2SO4-10H2O) (рис. 25).
В солнечных коллекторах нагревался воздух, который поступал в химические аккумуляторы. Теплый воздух по каналам направлялся из аккумуляторов в жилые помещения.
Типичный пример —Дом Пибоди в Довер-Масс (США; архитекторы М. Телкес и Е. Раймонд, 1948 г.). Двухэтажный дом, однако второй этаж не отапливается. Солнечные коллекторы воздушного типа площадью 66,9 м2 установлены вертикально с южной стороны. Аккумуляторы тепла емкостью 13,3 м3, наполненные глауберовой солью (Na2SC>4-10Н2О). Общий объем аккумулятора— 28,3 м3; 80% всех потребностей в отоплении дома удовлетворялись за счет солнечной энергии. Запасное обогревание — электрическое. Энергетическая автономия здания— шесть дней.
5.2.3. Система Блисса — Денована. Дом, оборудованный такой системой с аккумулятором, заполненным гравием, был построен в 1945 г. Нагретый воздух из солнечного коллектора поступал в аккумулятор, а оттуда уже в жилое помещение через вторую циркуляционную систему (рис. 26).
Типичный пример — Дом Блисса в Амадо, Аризона (США; архитекторы Р. В. Блисс и М. К. Денован, 1954 г.). Это был первый дом, в котором обогревание и кондиционирование осуществлялось целиком за счет солнечной энергии. Одноэтажный дом площадью 65 м2. Площадь поверхности солнечного коллектора воздушного типа 29,2 м2, одинарное стекло, аккумулятор вместимостью 65 т с галькой (емкость 35 м3), в подвале было предусмотрено запасное электрическое обогревание, но оно не используется. Летом кондиционирование осуществлялось при помощи той же системы.
Эстетические и архитектурные проблемы не были решены, но правильность всей системы была доказана. Эта система так
часто использовалась во многих зданиях с некоторыми изменениями, иногда усовершенствованиями.
5.2.4. Система Лёфа. Первая система с воздушными коллекторами и аккумуляторами с гравием была использована в Булдер-Ха — ус, построенном в 1945 г. Обогревание осуществлялось распределением горячего воздуха. Аккумулятор тепла мог устанавливаться как горизонтально, так и вертикально (рис. 27).
Типичный пример — дом Лёфа в Денвер Колорадо (США, 1959 г.). Жилая площадь около 186 м2. Площадь поверхности коллекторов воздушного типа 55,7 м2. Они установлены на южной стороне кровли под углом 45°. Воздух, нагреваемый в кол-
|
|
|
|
|
|
|
|
лекторах, подается с помощью мотора в 1 л. с. в аккумулятор, который состоит из двух вертикальных цилиндров (91 см в диаметре, 5,5 м в высоту), заполненных 6 т гравия. Воздух проходит через горячий гравий и поступает в жилое помещение. Зимой около 25—30% необходимой отопительной энергии и часть потребностей в горячей воде удовлетворяются солнечной энергией. Летом специальные коллекторы с одинарным остеклением дают энергию для кондиционирования, а коллекторы с двойным остеклением снабжают горячей водой.
5.2.5. Система Лефевра. Эта очень интересная и простая система была впервые использована в 1954 г. Стены здания обо — ; греваются посредством вертикально установленных коллекто — ‘ ров и служат аккумуляторами (рис. 28). Таким образом, обычно очень дорогой аккумулятор тепла устраняется, и вся обогревательная система становится дешевле.
Типичный пример — дом Лефевра в Стоверстоне (Пенсильвания, США; архит. X. Р. Лефевр, 1954 г.). Двухэтажный дом,
в котором отапливается только нижний этаж (общая долезна^я площадь 116 м2). Солнечный коллектор воздушного типа с двойным остеклением (площадь поверхности 41,8 м2) устанавливается вертикально на втором этаже с южной стороны. Никаких специальных аккумуляторов, они устроены в стенах. Жилые помещения обогреваются циркуляцией теплового воздуха. Около 40—50% всех потребностей в обогреве дома осуществляется за счет солнечной энергии. Запасное отопление газовое.
5.2.6. Система Моргана. Эта первая европейская система была построена в 1961 г. около Ливерпуля в Англии. Здание обогревается только солнечной энергией и некоторыми незначительными источниками (человеческое тепло, лампы). Там нет солнечных коллекторов в обычном смысле этого слова и нет аккумуляторов, так как тепло накапливается в стенах и потолке здания (см. рис. 63).
Типичный пример — школа святого Георгия в Валласей (Ливерпуль, Англия; архит. А. Е. Морган, 1961 г.). Двухэтажное здание школы, рассчитанной на 320 учеников, имеет 67 м в длину. Южная сторона на 90% состоит из стекла, за которым помещается окрашенная в черный цвет бетонная стена. Бетонный потолок и кирпичные стены сделаны такого размера, чтобы они могли поглотить как можно больше тепла, сохранить его, а затем отдать. Там нет запасного обогрева, а потребность в дополнительном отоплении осуществляется за счет человеческого тепла, электрического света. Энергетическая автономия здания 7 дней. Измерения, проделанные Ливерпульским университетом (М. Г. Давиес) показывают, что такая обогревательная система действует удовлетворительно (см. также гл. 9, § 9.2).
5.2.7.Система Тромба—Мишеля. Эта французская система солнечных домов (патент CRNS Тромба, 1956 г.) основана на принципе накопления солнечной энергии только в массе здания (см. рис. 65) и напоминает систему Лефевра. Солнечная радиация поглощается вертикальными, обращенными на юг поверхностями с тройным остеклением, которые устанавливаются на черной бетонной стене (30 — 40 см). Поверхность стекла занимает 10% всей поверхности здания. Теплый воздух поступает через маленькие отверстия в жилое помещение и распределяется посредством естественной конвекции. Первый экспериментальный дом, в котором использован этот метод, был построен в Пиренеях в 1962 г.
Типичный пример — «Солнечное шале» в Одейло (архитекторы Ф. Тромб и Дж. Мишель, 1968 г.) (рис. 29). Шале имеет жилую^ площадь 80 м2 (в одном уровне). Вся южная сторона (кроме двойной двери) покрыта солнечными коллекторами. Так как климатические условия в Одейло очень благоприятны (2750 солнечных часов, 360 теплых дней в году) 0,5 м2 поверхности коллектора достаточно для каждых 10 м3 здания (в Париже 1 м2 на 10 м3, Шовенси-лё-Шато 1,3 м2на 10 м3). Потребности дома в теп-
Рис. 29. «•Солнечный дом» в Одейло с вертикальными коллекторами ‘ |
ле исчисляются 32 тыс. кВт-ч в год, 65% удовлетворяются за счет солнечной энергии. Запасное отопление электрическое. Энергетическая автономия здания рассчитана на два дня.
5.2.8. Sky-therm-система (Хэй-Джеллот). В этой системе, основанной на принципе попеременного нагревания и испарения и примененной впервые в 1967 г., нет солнечных коллекторов и аккумуляторов тепла в обычном смысле этого слова. Поглощение и аккумулирование солнечной энергии осуществляется лотком с водой глубиной 21 см, установленным на плоской кровле. Лоток сделан из черных полиэтиленовых секций, которые покрываются тяжелыми полиуретановыми пластинами толщиной 4,5 см. Зимней ночью лоток накрыт и дом обогревается через потолок. Летом лоток оставляют открытым ночыр и накрывают днем, осуществляя таким образом кондиционирование воздуха в помещении (см. рис. 34).
Типичный пример — дом в Финиксе (США, 1967 г.). Экспериментальный дом с одной комнатой, одноэтажный. Жилая площадь 11 м2. Площадь водного лотка 15,8 м2. Здание испытывалось два года и результаты оказались удовлетворительными. Дом," больший по величине, оборудованный такой системой, строится в Атаседеро, в Калифорнии (США).
5.2.9. Система Байера. Основное в этой системе — размещение в южной стене дома 90 баков, каждый вместимостью 200 л (всего 18 тыс. л воды). Когда светит солнце, окрашенные в черный цвет внешние поверхности открыты, и солнечная радиация, по-
падая на них через стеклянную пластину, нагревает воду (см. рис. 41). Ночью или в плохую погоду эти поверхности закрываются с внешней стороны движущимися покрытиями (щиты из тяжелого утеплителя) и отдают жилому помещению тепло, полученное в течение дня.
Типичный пример — дом Байера в Нью-Мексико (США, 1972 г.). Жилая площадь 185 м2 (один этаж), полезная площадь коллектора — 24,1 м2. На 90% дом обогревается за счет солнечной энергии, остальные 10% восполняются двумя каминами на древесном топливе. Летом «водяные стены» охлаждаются ночным воздухом и в течение дня используются для воздушного кондиционирования. Движущаяся внешняя плита имеет 35 см в толщину, весит всего 6,75 кг/м2 и играет важную роль в качестве утеплителя. Запасное отопление (два камина) используется не более 10 раз в год.
5.2.10 Система Бриджерса— Пакстона. Эта система, разработанная в 1956 г., была одной из первых, где распределение тепла было достигнуто обогреванием пола. Тепло принимается водяными коллекторами. Теплонакопигель и теплоноситель — вода. Эта система используется сегодня почти исключительно европейскими изготовителями.
Типичный пример — конторское здание Бриджерса—Пакстона в Альбюкере (Нью-Мексико, США). Отопление здания и конди-
|
|
|
ционирование осуществляются за счет солнечной энергии. Полезная площадь составляет около 410 м2. Солнечные коллекторы, использующие воду, делаются из алюминия и имеют площадь поглощающей поверхности 71 м2. Аккумулятор тепла вмещает 23 тыс. л воды. Теплоотдача осуществляется с помощью наполненных водой труб, которые проходят по потолку и полу. Установка снабжена также тепловыми насосами. Эта система удовлетворительно функционирует с 1956 г.
5.2.11. Система Вагнера, или пассивное использование солнечной энергии. В зданиях, оборудованных системой такого рода, солнечная радиация непосредственно конвертируется в обогревание воздуха. Там нет солнечных коллекторов, но дом частично или полностью имеет покрытие из прозрачного стекла. Воздух между стеной дома и наружным стеклом нагревается вследствие парникового эффекта. Само здание обычно служит частью аккумулятора.
Типичный пример■— «Растущий дом» (архит. М. Вагнер). Это здание, спроектированное в 1931 г., имеет площадь около 94 м2. Гостиная находится в центре здания, а другие комнаты расположены вокруг нее. Дом окружен стеклянным покрытием на расстоянии 1,5 м от конструкций. Эта воздушная подушка позволяет
1 — солнечный коллектор; 2 — двухкорпусный солнечный бойлер; 3 — теплообменник; 4 — аккумулятор лишнего тепла; 5 — насос для циркуляции используемого теплоносителя; 6 — расширитель для используемого теплоносителя; 7 — термостат для регуляционного насоса; 8 — используемая холодная вода; 9 — термостат; 10 — магнитный клапан перелива; 11—выпускной клапан переполненной емкости; 12 — запорный клапан; 13 •—теплый пол; 14 — расширительная камера; 15 — двухцелевой бойлер для различного топлива; 16 — горелка для жидкого топлива; 17 ~ смесительный клапан; 18 — регуляция наружной температуры; 19 — выпускной датчик; 20— наружный датчик; ^ — циркуляционный насос отопления; 22 — двухкорпусный двухцелевой бойлер; 23 — распределитель горячей воды; £4 — горячая вода; 25 — щиток; 26— установка для таяния снега |
достичь парникового эффекта. Эта идея также используется в автономном «солнечном доме», который исследуется в Кембридже. О нем уже говорилось выше.
5.2.12.
![]() |
![]() |
Другие системы. Кроме описанных выше существует много других систем. Во многих патентных бюро во всем мире зарегистрированы тысячи наименований. Современная солнечная обогревательная система часто бывает снабжена тепловым насосом и иногда солнечными элементами, которые еще увеличивают число возможных комбинаций. Во многих случаях принципы и основные элементы остаются такими же, как и в системах, о которых говорилось выше.
Возможность использования солнечной энергии с целью отопления очень оптимистично оценивается в некоторых странах. По прогнозам Г. Гейяна, французского инженера-электрика, Франция сможет сэкономить около 5 тыс. кВт-ч электроэнергии на каждый дом в 2000 г., если будет построен миллион «солнечных домов». Это даст ежегодную экономию примерно 5 млрд. кВт-ч, а учитывая горячее водоснабжение и отопление,— 7 млрд. (109) кВт-ч (7 тыс. кВт-ч на 1 дом). Это означает 0,7% всех потребностей Франции в электроэнергии в 2000 г. Фактические возможности еще более значительны. Р. Шерри и М. Морс, авторы книги «Солнечная панель», предполагают, что 35% обогрева и воздушного кондиционирования зданий в США к 2035 г. будет производиться за счет солнечной энергии. К Ш85 г. 2 млн.
баррелей нефти может быть сэкономлено ежедневно за счет солнечного обогревания.
Эксперименты в Туркмении (СССР) показали, что дополнительная стоимость зданий, оборудованных такими системами (отопление, 300 л горячей воды на’семью в день и кондиционирование летом), составит не более 4—6% всей стоимости здания. Это может окупиться в сравнительно короткий срок за счет экономии электроэнергии и нефти.
К сожалению, очень важные вопросы пропорций между стоимостью зданий и солнечной энергии еще не обсуждались в деталях. Основная проблема состоит в том, что для каждого здания и разных климатических условий существуют свои оптимальные цифры. Ученые и инженеры до сих пор не пришли к единому мнению по поводу оптимальных методов использования солнечной энергии.
Институт Батей в Женеве (Ж. К. Курвуазье и Ж — Фурнье) опубликовал интересные расчеты для района Женевского озера, касающиеся использования солнечной энергии для обогрева. В Женеве, Лозанне и Невшателе ежегодные потребности в нефти для отопления жилища исчисляются в 3043 л (в Лейсане — 5650 л). Расчеты показывают, что даже при средней интенсивности излучения (число солнечных часов в год в Женеве— 1979, в Лозанне—1971, Невшателе— 1699, Лейсане— 1808) возможна довольно большая экономия нефти.
Для дома с жилой площадью 120 м2 и поверхностью коллектора 50 м2 (эффективность 70%) 48% ежегодно потребляемой нефти может быть сэкономлено в Женеве (1463 л), 52% в Лозанне (1583 л), 41% в Нёвшателе (1245 л), 47% в Лейсане (2650 л). Таким образом, использование солнечной энергии для обогрева домов в Швейцарии приведет к значительной экономии нефти, будут сэкономлены большие средства, а кроме того, меньше будет загрязняться окружающая среда.