Heat exchanger model

1.1. Model structure

There are in general two possible ways to describe the thermal behaviour of a heat exchanger considering its geometry. The first one is to (numerically) solve heat transfer equations using finite element or volume methods, e. g. in FLUENT. However, these models require much computing effort and are, therefore, not appropriate for an optimization of the whole heat exchanger configuration. Depending on the optimization algorithm and the complexity of a problem, several thousand calculations can be required. The second way is to use empirical heat transfer correlations

gained from experimental investigations. Models based on empirical correlations require little computing effort, but usually have higher inaccuracies than those using finite element methods.

The model presented here (in the following simply referred to as “the model”) uses empirical heat transfer correlations. It is based on the detailed cooling coil model Type1223new[6] of the ASHRAE[7] HVAC Secondary Toolkit [3, 4], which separately considers wet and dry parts of the heat exchanger surface. Thus, the model accounts possible condensation of vapour[8] on parts or even all over the heat exchanger surface, if the surface temperature is below the air dew point temperature. In comparison to Type1223new, other heat transfer correlations have been implemented. Furthermore, pressure drops on both water and air sides are accounted and the model uses temperature-depending physical water and air properties, evaluated at the mean flow temperature, instead of constant values.